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ABSTRACT

The branched crack problem for both an isotropic and anisotropic material is solved
using the method of dislocations, and the stress intensity factors and T—stress in front of the
branched crack are evaluated numerically . The T—stress based fracture criteria, developed
by Cotterell and Rice for a flat crack, is modified by incorporating an experimentally deter-
mined critical T—stress value (T,;). Based on this T, @ modified T-stress based fracture
criteria is proposed. This criteria is applied to the branched crack and the direction of growth
of the branched crack is discussed by comparing the theoretically evaluated T—stress values
with some available experimentally determined T values.

The solution for the branched crack problem is obtained in terms of a singular integral
equation which is solved using three different numerical schemes, the merits of which are
discussed. The nature of the stress singularity at the reentrant wedge corner of the branched
crack is analyzed and is verified for the isotropic case. It is shown that the T—stress and the
stress intensity factors are insensitive to the order of the singularity assumed at the reentrant
wedge corner of the branched crack in either an isotropic or anisotropic material. The T-
stress for the isotropic case is obtained in terms of applied load, kink length and kink angle.
For the anisotropic case the T—stress also depends on the relative stiffness properties of the
fibre and matrix. For a uniaxial loading case, by applying the modified T—stress based crite-
riato the branched crack, it is demonstrated that for a short kink length the kink will turn from
its initial direction and realign with the main crack. If the loading is biaxial then the kink
growth direction depends strongly on applied transverse stress 0xx>°. For a longer initial
kink length the kink growth direction depends on the kink angle, loading and relative stift-

ness of the fibre and matrix.
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CHAPTER 1
INTRODUCTION

Background

Linear Elastic Fracture Mechanics (LEFM) proposes that for brittle materials a single
parameter, the stress intensity factor (Kc), is sufficient for predicting fracture. Itis also im-
plied that the K¢ is a property of the material similar to Young’s modulus and the ultimate
strength. Over the years LEFM has been applied to a wide range of materials with reasonably
good success. Butithas been observed by a number of researchers [1-4] that for some mate-
rials both Kj¢ and crack growth direction can depend on the coupon geometry. Albritton
and Goree [5] demonstrated, through a number of experiments, a significant influence of ge-
ometry on Kjc for silicon carbide reinforced aluminum coupons. Three types of coupons
were tested, namely compact—tension (CT), center—crack—tension (CCT) and single—edge—
notch tension (SENT). It was observed that crack turning occurred for CT coupons while
it did not occur for SENT and CCT coupons with the same configuration. These results led
to further investigation of the problem by Richardson and Goree [6]. They proposed an em-
pirical two—parameter (the parameters are Kjc and T—stress) fracture criterion which ac-
counted for the geometry of the coupon. The validity of the model was demonstrated for
Polymethyl methacrylate (PMMA) [6]. This model however did not account for turned
cracks.

In the present study the crack turning behavior in isotropic and anisotropic materials
is analyzed and the T-stress evaluated in front of a branched crack (or kink). The geometry
of the branched crack problem with the relevant labels is shown in Figure 1. An infinite body
(isotropic or anisotropic) with a main crack of length 2c and a kink (or branched crack) of
length / is shown. The branched crack makes an angle 8 with the X axis. Bi-axial loads ¢

and ko are applied remotely along the Y and X axis respectively. The T-stress is defined
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as the constant term in the asymptotic stress expansion in front of the kink or the stress com-
ponent which acts parallel to and along the kink. Cotterell and Rice [7] evaluated the T-
stress in front of an unbranched or flat crack and proposed a criterion which determines the
direction of crack growth. This T—stress based criterion is modified, and the modified criteri-
on is extended in the present study to the case of the branched crack. A detailed description

of the development of this T-stress based model is given in Chapter V.

Figure 1. Geometry of the Branched Crack Problem

In order to study the influence of the T—stress on the branched crack it is necessary to
solve the branched crack problem in an infinite panel for both isotropic and anisotropic mate-

rials. In the remainder of this chapter areview of the literature on the branched crack problem
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is presented. A brief survey of related fracture models for predicting crack growth and stabil-

ity which are available in the open literature is also given.

Literature Review On the Branched Crack Problem-Isotropic Materials

A large volume of literature is available on the subject of the branched crack in an iso-
tropic material. It is interesting to note that crack branching was first studied for the dynamic
crack growth problem before the focus shifted to crack branching during quasi-static crack
growth. The term quasi-static (or static) is used to describe the condition when the crack-tip
velocity is small, and there is no sudden change in velocity and the dynamic effect that it pro-
duces can be neglected.

Yoffee [8] was one of the earliest to study crack branching during dynamic crack
growth in a brittle material like glass. She was the first to propose that fracture will take place
in a direction normal to the maximum tensile stress in a dynamic crack growth situation.
Based on this assumption, a critical velocity of crack growth was determined, above which
crack branching occurred. Schardin [9], Clark and Irwin [10] and Congleton and Petch [11]
studied similar problems both analytically and experimentally. Mostovy, et al., [4] and Carter
[12] studied crack branching due to stress corrosion in high strength steel.

The analytical study of static crack branching can generally be grouped, based on the
methodology used, into (1) conformal mapping techniques, (2) dislocation techniques, (3)
Mellin transforms and (4) perturbation techniques.

Using conformal mapping, the geometry of the branched crack is first mapped on to
an equivalent circle and then the mapped problem is solved. This method is used to calculate
the stress intensity factors and the energy release rates at the branched or kinked crack tip.
The disadvantage of this method is that its accuracy decreases as the kink length becomes
infinitesimally small.

In the dislocation technique the kink is modeled as an edge dislocation. With this

method it is possible to calculate the fracture parameters for infinitesimally small branched
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cracks also. The dislocation technique is used in the formulation of the problem in the pres-
ent study since a range of kink lengths, from infinitesimally small to very large can easily
be modelled.

Mellin transform and perturbation techniques can also be used to solve infinitesimally
small kink length problems. Perturbation techniques can be used to obtain solutions for finite
kink lengths if more relevant terms are included in the series solution. Sometimes a com-
bination of the above methods are used to solve the branched crack problem.

In the next few paragraphs areview of the literature on branched crack is given, which
traces the development of studying branched crack problems in an isotropic and anisotropic

material.

Conformal Mapping Techniques

Andersson [13,14] was the first to calculate the stress intensity factors at the tips of a
star shaped contour in an infinite tensile sheet, with remote loading, using conformal map-
ping and Muskhelishvili [15] complex variable methods. Dudukalenko and Romalis [16]
used conformal mapping techniques to map a finite crack with a branch onto a circle. They
used maximum energy release criteria to determine the crack turning direction. Palaniswa-
my and Knauss [17] used conformal mapping techniques to study the branched crack prob-
lem. They compared the stress and energy based fracture criteria for mixed—mode fracture
problems and concluded that the energy based criteria was conservative when compared to
the maximum stress criteria. They also performed experiments relating to mixed—mode frac-
ture and discussed the results in light of their analytical solution. Chatterjee [18] solved the
branched crack problem by using conformal mapping method. He calculated the stress in-
tensity factors in front of the kink and the main crack for small kink length of the order of
1/1000 th the main crack length. For smaller kink angles it was reported that the numerical
scheme became unstable. Chatterjee also was the first to show that the stress singularity at

the kink corner was indeed the Williams [19] singularity. It should be kept in mind that the
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methodology used by Chatterjee for solving the problem was conformal mapping. A similar
proof for verifying that the singularity at the kink corner is that given by the Williams [19]
singularity for the branched crack problem (solved by dislocation techniques) will be dis-
cussed in this study. Hussain, et al., [20] used the conformal mapping technique to study the
branched crack problem in an infinite plane and calculated the crack growth path based on
Griffith’s energy release criteria when the branched crack was very small compared to the
main crack length. Kitagawa, et al., [21] and Kitagawa and Yuuki [22] also analyzed the
problem of the branched crack using conformal mapping. They examined bent, curved,
branched and zig-zag crack geometries. The influence of biaxial loading on the stability of
crack growth was also addressed by them. They used the Erdogan and Sih [23] maximum
hoop stress criteria to determine the angle of growth of akinked crack. With their model they

were able to analyze only finite kink geometry.

Dislocation Technique

Lo [24] was the first to solve the branched crack problem using the dislocation method
and he obtained the stress intensity factors for the entire range of kink length varying from
infinitesimally small to large kink length. The results obtained by Lo [24] agreed with the
results of Chatterjee [18], Kitagawa, et al., [21] for finite kink lengths but disagreed with
those of Dudukalenko, et al. [16], and Hussain, et al., [20] for infinitesimally small kink
lengths. Karihaloo, et al., [25] used the dislocation method to reexamine the problem ad-
dressed by Cotterell and Rice [7] (who had obtained first order solutions) and constructed
a second-order solution for the branched crack. For an infinitesimally small kink they were
able to express the stress intensity factors in front of the kink in terms of the stress intensity
factors in front of the main crack in a manner similar to Cotterell and Rice [7]. They were
also able to obtain the correction terms for large kink angles by means of which the results
obtained by Cotterell and Rice [7] could be extended for kink angles more than 40 degrees.

It should be noted that Table. 1 in their paper (Karihaloo, et al. [25]) contains some numerical
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errors but can be corrected if the formula they give earlier in the paper is used to calculate
the quantities in the table. Hayashi and Nemat—Nasser [26], using dislocations, expressed
the stress intensities and the energy release rate of the kink in terms of the stress intensities
existing in front of the main crack and some coefficients whose numerical values were given
in a tabular form. Datsyshin and Savruk [ 27] analyzed the problem of multiple arbitrarily
oriented cracks using amethod similar to the dislocation method. They obtained the solution
in terms of singular integral equations where the unknown was the slope of the crack opening
displacement just as in the dislocation method. They, however, did not study the case when
the cracks touch each other. Theocaris and Ioakimidis [28] analyzed the symmetrically
branched crack in an infinite body using a method similar to that used by Datsyshin and Sa-
vruk [27]. They also found that their results for stress intensity factors compared well with
the experimental results of symmetrically branched cracks which was determined using the
method of caustics [29]. Later Theocaris [30] also analyzed the problem of asymmetrically
branched crack and found good agreement with the stress intensity factors obtained exper-
imentally using the method of caustics [29]. The disadvantage of using the method used by
Theocaris to solve branched crack problem is that instead of obtaining one complex singular
integral equation as in the case of dislocation method, two complex singular integral equa-

tions are obtained.

Mellin Transform
Khrapkov [31], using Mellin transforms, obtained the solution for a branched crack
emanating from a semi-infinite notch. Bilby and Cardew [32] obtained the stress intensity
factors in front of the kink tip in terms of the stress intensity factors of the main crack for
infinitesimally short kink lengths. The stress intensity factors for the in—plane and anti-
plane problem were calculated using the methodology developed by Khrapkov [31]. They
included the constant stress term (T—stress) parallel to the main crack in the analysis and

made use of the maximum energy release criterion to predict the initial angle of crack kink-
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ing. Later Bilby, etal., [33] solved the problem of forked cracks using the same methodology
as discussed in [31]. They compared their results for a single branched crack with Chatterjee
[18] and Kitagawa, et al., [21]. Their results for a branched crack agreed with Chatterjee [18]
but disagreed with Kitagawa, et al. [21]. Melin [34] used the Mellin transform technique to
obtain the stress intensity factors accurately in front of an infinitesimally small branched

crack.

Perturbation Technique

Banichuk [35], using perturbation techniques and Muskhelishvili complex stress
functions [15], obtained the solution for a weakly curved, infinitesimally small crack, in a
brittle material using the local symmetry of the stress state (i.e., K;;=0) and the Griffith ener-
gy criterion. Gol’dstein and Salganik [36] used perturbation methods to calculate the stress
intensity factors in front of an infinitesimally short kink. They used the criterion of local
symmetry (i.e., Kjj=0) to determine the growth direction of the kink. Cotterell and Rice [7]
used methods similar to the ones used by Banichuk [35] and Gol’dstein, et al. [36], to solve
the infinitesimally small branched crack with a small deviation from the main crack direc-
tion. They also incorporated the constant stress acting parallel to the main crack (T—stress)
in their formulation and determined a stability criterion for crack branching using the T—
stress. For an infinitesimally small kink Cotterell and Rice [7] compared their calculated
stress intensity factors with those obtained by Bilby, et al., [33] and found good agreement
even for larger (up to 40 degrees) angles of kink. For finite kinks their results matched well
with those of Kitagawa, et al., [21]. They also expressed the stress intensity factors in front
of the kink in terms of the stress intensity factor of the main crack and coefficients which are
functions of the the kink angle. These coefficients are the terms containing the angular varia-
tion in the Irwin—Williams asymptotic stress expansion in front of the crack tip. The stress
intensity factors obtained by Cotterell and Rice [7] were of first order approximation. Sumi,

etal., [37] using perturbation methods and an alternating scheme developed a solution to de-
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termine crack growth path in a finite geometry. They assumed a shape for the crack extension
and by using the principle of local symmetry determined the crack growth path in a finite
geometry. They also noted that for a first order approximation, the far field stresses in a finite
body were not affected by the shape of the crack extension. Karihaloo, et al., [38] made use
of the perturbation technique to obtain the curvature of the infinitesimally small growing
kink. They reported that the curvature depended not only on the T—stress term but also on
the derivatives of the stress intensities of the main crack with respect to the main crack length.
Leblond [39] and Amestoy and Leblond [40] obtained a more exact expression for the stress
intensity factors in front of the kink by using more terms in their asymptotic expansion. By
making use of the principle of local symmetry and maximum energy release rate criterion

they proposed a method to trace the path of a growing mixed—-mode crack.

Literature Review On the Branched Crack Problem—Anisotropic Material

Branched cracks in an anisotropic body have been studied considerably less than the
isotropic case. Eshelby [41] was the first to give expressions for the elastic displacement and
energy due to a dislocation in an anisotropic body. This work was followed by Frank [42]
who laid down the foundations of crystal dislocation theory. Eshelby, et al., [43] derived the
general solution of the elasticity equations for an arbitrary homogeneous solid where the
elastic state is independent of one of the three Cartesian coordinates. Following this earlier
work Stroh [44] developed the expressions for the stresses in an general anisotropic body
(where the field is independent of one of the three Cartesian coordinates) due to adislocation,
apile of parallel dislocations and a crack. Atkinson [45] investigated the behavior of a mov-
ing semi-infinite plane crack in an anisotropic material where the direction of propagation
lies in the plane of material symmetry. Atkinson [46] followed this work with a study of the
interaction between a crack and a dislocation in an infinite anisotropic body where again the
field is independent of one of the coordinate axis.

A general anisotropic elasticity theory was also developed independently by Lekhnits-
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kii [47], Green and Zerna [48] and Savin [49]. The foundations of fracture mechanics as ap-
plied to cracks in anisotropic bodies was first introduced by Sih, et al., [50] and Wu [51].
Steen Krenk [52] developed the general solution for a finite number of collinear cracks in
an anisotropic infinite body using the Muskhelishvili complex variable formulation. From
the analysis he concluded that if the loads on the crack surface were self equilibrating then
the normal and shear stresses on the lines of the crack were independent of the elastic
constants. He also developed expressions for stress intensity factors in front of the crack tip.
Tan and Bigelow [53] used the boundary force method to analyze an edge crack and an in-
clined single edge crack in a finite anisotropic body.

Obata, et al., [54] solved the branched crack problem using dislocation techniques.
Their method was similar to that developed by Lo [32] for an isotropic case. Their analysis
was valid only for infinitesimally small branched crack. They calculated the stress intensity
factors and energy release rate in front of the kink and from the analysis concluded that the
behavior of the stress intensity factor was similar to that of the isotropic case whereas the
behavior of the energy release rate was different. Their conclusion was based on analyzing
the problem in which the stiffer material axis was always perpendicular to or inclined at a
small angle to the main crack. Obata, et al., [54] did not consider anisotropy in the fracture
toughness of the material.

Chiang [55] gave an approximate solution for determining the stress intensity factors
at the kink tip in terms of the stress intensity factors of the main crack for the case where the
kink is infinitesimally small. The asymptotic stress field around the kink tip was derived for
the degenerate case when the anisotropy becomes isotropic. Chiang [55] also notes that the
maximum stress intensity necessarily does not occur when the kink angle is zero.

Gao and Chiu [56] used Stroh’s [44] formulation to solve the infinitesimally small
branched crack problem in an anisotropic body. With their model they were able to analyze
wavy, jogged and kinked cracks. They provided first and second order perturbation solutions

for stress intensity factors at the tip of the kink in terms of the stress intensity factors of the
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main or macro crack. They also included the T—stress acting parallel to the macro crack in
their formulation. It was observed that the stress intensity based fracture criteria leads to
physically unreasonable branching angles whereas the strain energy based fracture criteria
gave physically reasonable results for crack branching angles. Based on the energy criterion
they were able to show that the T—stress can be used in the same way as in the isotropic case
to determine the stability of crack propagation. They also did not include a variation in
strength in their formulation.

Xu and Keer [57] used a perturbation technique in a manner similar to Cotterell and
Rice [33] and Sumi, et al., [35] to express the stress intensity factors in front of the kink in
terms of the stress intensity factors of the main crack. They incorporated anisotropy in
strength in their model. By using the normal stress ratio criterion developed by Buczek and
Herakovich [58] and Gregory and Herakovich [59] they were able to show that the T—stress
may not behave the same way as in the isotropic case. For example, they showed that for
some stiffness ratio and material orientation a negative T-stress caused unstable crack
growth which is contrary to what is observed in isotropic materials.

Since the present study involves development of a fracture criteria to determine the
behavior of a kinked crack, a brief survey of the development of several fracture criteria is

given below.

Review of Salient Fracture Criteria—Isotropic Material

In the next few paragraphs some of the important fracture criteria are outlined for an
isotropic material. The fracture criteria can be generally classified as either stress based or
energy based. All the criteria discussed below are only for plane problems.

Griffith [60,61] was the first to develop the energy based fracture criteria. He postu-
lated that the crack in a material grew if the rate of change of elastic energy of a material with
respect to the crack length exceeded a critical energy rate. He determined that every material

had a specific critical energy rate, called the critical energy release rate, which if exceeded
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caused the crack to grow.

Irwin [62] used the stress intensity factors to determine when the crack grew and
showed the equivalence between the energy release rate criteria and the stress intensity fac-
tors. All the work for some time was related to mode one fracture.

Erdogan and Sih [29] and Panasyuk, et al., [63] were the first to study the mixed mode
static crack problem. Erdogan and Sih [29] argued that the crack travels in a direction per-
pendicular to the maximum hoop stress which also corresponds to zero shear stress. Based
on experiments they performed, they observed that their model predicted experimental re-
sults reasonably well even though some discrepancy existed. Williams and Ewing [64] stu-
died this problem further and showed that by including the non—singular stress term, namely
the T—stress, the experimental results obtained by Erdogan and Sih [29] could be matched
much better with their analytical results. Since the T—stress was included, the hoop stress
had to be calculated at a certain distance from the crack tip. This distance was considered
to be amaterial parameter which varied with materials but was fixed for a particular material.
Finnie and Saith [65] pointed out an error in the Williams and Ewing [64] calculation which
substantially improved the correlation between experiment and theory. Sih [66-67]
introduced a fracture criterion based on strain energy density called the S—criterion. He pro-
posed that fracture occurs along the direction in which the strain energy density attains a
minimum value at a specific distance from the crack tip. This distance is a material parame-
ter. A sample of the literature dealing with the energy or the stress based fracture criteria is

listed in reference [68-72 ].

Review of Fracture Criteria—Anisotropic Materials

The fracture criteria for anisotropic bodies are much less developed than those for iso-
tropic bodies. In fact, it has been only recently that a number of task groups have been estab-
lished by ASTM to determine if isotropic fracture criterion could be extended to orthotropic

bodies. Albritton and Goree [5] carried out experiments on silicon carbide reinforced alumi-
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num and determined that the ASTM standards used for isotropic material cannot be applied
to an orthotropic material like silicon carbide reinforced aluminum.

Sih, et al., [50] developed the equations for the near—crack—tip asymptotic stress fields
for both in—plane and anti-plane problems. They also developed methods for determining
stress intensity factors at the crack tip in an anisotropic body. The stress intensities were de-
fined in such a manner that the form of the stress intensity factor was similar to the isotropic
case but the actual magnitudes of the stresses were different since they depended on the mate-
rial parameters. Based on this, Sih, et al., [50] concluded that same fracture criteria devel-
oped for isotropic materials could be extended to the anisotropic materials. They did not con-
sider the variation in strength for the anisotropic material.

Maiti [73] used the stress intensities for an infinitesimal small kink to derive the energy
release rate for an infinitesimal small kink and studied the variation of the energy release rate
with the kink angle.

Saouma, et al., [74] studied the inclined crack problem (mixed—mode) in an anisotrop-
ic body. They maximized the ratio of the circumferential stress to the critical tensile strength
of the material and observed that the material anisostropy significantly affected crack exten-
sion when compared to the predictions made by a similar isotropic model.

Zhang [75] studied the problem of relating the fracture toughness, parallel and perpen-
dicular to the fiber of an orthotropic material. He proposed including the shear stress term
for deriving the stress state in front of a crack perpendicular to a fiber. By including the shear
stress term, the theoretical prediction matched closely to the experimental results.

Sarkar and Maiti [76] provided a formula for relating the critical fracture toughness
of an orthotropic material due to a crack parallel to the fibers, to the critical fracture tough-
ness when the crack is inclined at an angle to the fibers.

Zhang, et al., [77] proposed a new energy based fracture criterion to predict mixed
mode crack initiation and propagation called the Z—criterion. This criterion suggests that

mode I crack initiation is controlled by dilational strain energy, mode II crack initiation is
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controlled by distortional strain energy and mixed mode crack initiation and propagation by
the damage energy density factor called the Z—criterion. Zhang, et al., [78] extended Tsai—-
Hill and Norris criteria to predict crack turning in orthotropic materials.

Obata, et al., [54] solved the problem of an infinitesimally small kinked crack in an
orthotropic material. They base their formulation on Lekhnitskii’s {47] approach. Based on
their results, they concluded that the behavior of the stress intensity factors for an orthotropic
material is similar in nature to isotropic materials. But they note that the variation in energy
is different from the isotropic case.

Chiang [55] solved the problem of a semi—infinite crack with a kink in an orthotropic
material. He expressed the stress intensity factors in front of the kink in terms of the the stress
intensity of the main crack and also derived the asymptotic stress field around the crack tip
when the material becomes isotropic.

Ellyin and El Kadi [79] proposed a critical strain energy density criterion that predicts
crack growth direction closer to experimental results. They also compare their results with
the normal stress ratio criterion and minimum strain energy density and find that their model
predicts crack turning angle better than the above mentioned models.

Gao and Chiu [56] use Stroh’s formulation to solve the kinked crack problem in an ani-
sotropic body. They point out to some erroneous conclusions by Obata, et al [S4] which are
described below. Gao and Chiu [56] observe that when the main crack is parallel to the fiber
direction the local maximum for K; does not occur when the kink angle is zero which is con-
trary to what was reported by Obata, et al., [S4]. They show that using stress intensity factors
to predict crack turning angles leads to some physically impossible conclusions which are
contrary to the isotropic case. The energy based criteria is shown to be a much better way
of calculating the kink angles. This point was missed by Obata, et al., [54] since the formula
they used to calculate the energy release rate was incorrect. Gao, et al., [56] also show that,
based on energy criteria, the Cotterell and Rice [7] T-stress criteria to predict crack growth

direction in isotropic material can be also extended to orthotropic materials. This conclusion
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should be treated with caution since they did not include a variation in fracture toughness
in their model.

Xu and Keer [57] used a perturbation technique to obtain the solution of an infinitesi-
mally small kinked crack in an orthotropic material. They use the normal stress ratio criteri-
on to predict crack growth direction and show that, for some stiffness ratios, negative T—
stress leads to unstable crack growth which is contrary to the isotropic case.

This brief survey of existing literature suggests that much works needs to be done in

the area of fracture mechanics as related to orthotropic materials.

How is the Present Study Different from Other T—stress Based Studies?

In the review of literature so far discussed, for isotropic and anisotropic materials, it
should be noted that the T—stress calculated in front of the main crack tip has been used only
to determine the stability of the crack growth. In other words the constant term in the asymp-
totic stress expansion in front of a flat crack has been used to determine the stability of the
crack once it branches or kinks. What this study attempts to do differently is to first calculate
the local T—stress in front of the branched crack or kink rather than calculate the T—stress
when the kink is flat (or coincides with the main crack). By doing this, the stability of the
branched or kinked crack itself can be discussed in terms of the local T—stress, which is a
function of the length and angle of the kink and the remote loads. Also Cotterell and Rice’s
[7] T-stress criteria is modified to include an experimentally determined T value and the
modified criteria is applied to the branched crack, and the behavior of the branched crack is

discussed in light of the modified T—stress criteria.

An Overview of this Study

This thesis is divided into two major subdivisions: (1) The Isotropic Case and (2) The
Anisotropic Case.

The Isotropic Case: First a description of the problem is given followed by the for-
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mulation of the analytical solution, whichis similar to the one derived by Lo [24]. The differ-
ence between this formulation and Lo [24] is that a remote biaxial loading is included in the
model. The analytical solution is obtained in terms of a singular integral equation in which
the slope of the kink-opening—displacement is the unknown. This is followed by a proof
showing that the singularity at the internal corner is given by the roots of the Williams’ char-
acteristic equation [19]. Then the singular integral equation is solved for the unknown slopes
of the crack opening displacement using three different numerical schemes. The advantages
and disadvantages of each numerical scheme is discussed in detail based on computational
time, numerical stability and rate of convergence. Next, the method used to calculate the
stress intensity factors and the local T-stress in front of the kink tip is outlined. This is fol-
lowed by the description of the T-stress based fracture criteria to predict how an already
kinked crack behaves. The influence of biaxial load on the local T—stress is also studied.

The Anisotropic Case: The details in this subdivision are very similar to that outlined
in the isotropic Case. A brief description of the problem is followed by a general analytical
solution to a branched crack problem in an orthotropic body. This is an extension of the
methodology established by Obata, et al., [S4]. The Obata, et al., [54] solution can be used
only for infinitesimal small kink lengths where as the present formulation is capable of han-
dling any kink length. The solution is obtained in terms of a singular integral equation where
the slope of the crack opening displacement is the unknown. The singular integral equation
is solved using three different numerical schemes. Again the effectiveness of each numerical
scheme is discussed in the light of computational time, numerical stability and rate of conver-
gence. The methods for calculating the stress intensity factors and the T—stress are estab-
lished. The influence of anisotropy on the T—stress and stress intensity factors are discussed
and a T—stress based fracture criteria is proposed which helps in the better understanding of

crack turning in an anisotropic material.




CHAPTER I
ISOTROPIC MATERIAL

Analytical Formulation

The formulation of the branched crack problem in an isotropic material follows the
procedure first developed by Lo [24]. Lo’s formulation is extended to include bi—axial loads.
Given below are the necessary equations in the final form. For more details on the derivation
of the equations, the reader is referred to Appendix A.

The geometry of the problem with the relevant labels is shown in Figure 1 (page 2).
Throughout the development of the analytical solution for the above branched crack prob-
lem, Muskhelishvili’s [15] complex variable approach is used. Dislocations are used to mod-

el the kinked crack. A brief description of the dislocation function is given next.

Description of Dislocation Function

Physically, on an atomic level, dislocations occurs because of some vacant spaces in
an atomic structure. In other words the continuity in the matter is lost. A line dislocation

can be defined as a boundary between a perfect (unslipped) and imperfect (slipped) region

in a crystal. The direction and magnitude of the slip is given by the Burgers vector b. This
line dislocation is classified into two types, namely the edge dislocation and the screw dis-
location, depending on the direction of the Burgers vector. If the Burgers vector is perpendic-
ular to the dislocation line (AD) it is known as an edge dislocation (Figure 2) and if the Burg-
ers vector is parallel to the dislocation it is known as a screw dislocation (Figure 3).
Mathematically an edge dislocation is used to represent inplane shear (Figure 4) and
normal stress (Figure 5) acting on a crack surface, while the screw dislocation is used to rep-

resent antiplane shear (Figure 6).
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Figure 3. Screw Dislocation
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Figure 4. In Plane Shear

Figure 5. Normal Stress

Figure 6. Anti Plane Shear
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From a macroscopic view point a crack can be assumed to be made up of a series of
these dislocations. Therefore, the stress fields due to a single dislocation can be viewed
mathematically as a Green’s function for a point discontinuity; and to obtain the stress field

for a crack of finite length /, the Green’s function is integrated over the length /.

Method of Superposition Explained

Superposition is used to solve the branched crack problem (Figure 7). First the stress
functions (®p(z),yp(z)) due to a single edge dislocation in an infinite isotropic body is for-
mulated, this is step 1 in Figure 7. The stresses due to this line dislocation on the main crack
which is of length 2c is obtained. The negative of this stress is applied on the main crack
which is step 2 in Figure 7. The stress potentials (@yv(z),Wm(z)) due to this loading condi-
tions are next developed. By summing up step 1 and 2, the stress free main crack in the pres-
ence of a single dislocation is obtained. To obtain the stress functions for a kink the sum of
the stress functions obtained in step 1 and 2 are integrated over the length of the kink. Next
the stress fields (@1 (z),yy.(z)) due to the main crack alone with loads at infinity are obtained
as step 3 in Figure 7. The stress potentials for the kinked crack problem is given by the addi-
tion of the above three solutions. Finally a singular integral equation, in terms of the disloca-
tion density function ©(t,), is obtained by satisfying the stress free boundary condition on

the kink. The unknown @©(t,) is solved for by using a suitable numerical scheme.

Formulation of the Problem

Step 1
The stress functions due to a single dislocation in an infinite plane can be written as
(see equations A.1-A.16).
Op(z) = O(t)In(z — zo) (D
VYp(@ = Ot)InGz — zo) = O(to)Zo/(z = Zo) @)




Figure 7. Superposition Steps in Solving the Kinked Crack Problem
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where z defines the position of a point in the infinite plane and z, defines the position of a
dislocation. ©(t,) is the unknown function which is given by the jumps in displacements

across the crack surfaces.
O(ty) = Eb(to)e®/{mi(x + 1)} : 3
bto) = [ut = u7] + ifuf — ugl (4)

where, z=te2, zo=toeie, E=Youngs Modulus, g(to) is the Burgers’ vector, 0 is the kink angle

and K is a constant whose value depends on the plane stress or plane strain assumption. The

components of the Burgers’ vector B(to) is shown in Figure 8 and Figure 9.

Ug

Ug~
Figure 8. Tangential Jump

U -

Figure 9. Radial Jump

The stresses are related to the differentials of the above functions (¢p, Wp) and the dif-

ferentials can be written as,
¢'D(Z) = (DD(Z) = ®(to)/(z = Zo)» &)
Vp(z) = Pp@) = Ot)/(z = z5) + Oto)Zo/(z — 20)* (6)
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~Step 2
The stresses acting on the main crack due to this dislocation is next evaluated and the
negative of these stresses are applied on the main crack as shown in Figure 7. The corre-
sponding stress functions are given as (see A.20-A.72),
Dpy(z) = — [0(te)F(z,20) + Ato)F(z, Zo) + lto)(2o — Zo)G(z, Zo)]» 0
Wy(z) = D (2) — Py(z) — 20 (2) €]

where,

X(zo
F(z,2) = %[1 - 7((8] /(2 — 7o)

G(z,z0) = %F(z, Zo)

Step 3
The stress functions for step 3, i.e. the main crack with remote infinite loading in both

the X and Y directions can be written down as (see A.73-A.85),

_ 0_?9 +c¢c, k-1
P (2) = — [ZX(Z) + 55 ] )
W, (2) = 922”1 22+ (1-%| (10)
(X(2))
where,
X(z) = J2z + 20), k = g’g‘ 63))
Yy

In the above equations, c is the half length of the main crack, and k is the biaxial stress
ratio. By the principle of superposition the stress functions developed in steps 1,2 and 3 can
be added to obtain the complete solution of the problem, as given below.

®(z) = Op(z) + Ppy(2) + D (2)- (12)

Y(z) = Wp(z) + Yy (2) + ¥ (2) 13)
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Once the stress functions are known, the stresses at any point in the infinite plane can
be written in terms of the stress functions in polar co—ordinates as follows.
Oge(2) + i0,4(z) = P(2) + D) + e20[zd'(2) + ¥(2)]- (14)
On(z) — 104(2) = D(z) + D) — 2¥[zd'(z) + V(2)]- (15)
On the kink surface both the normal stress (0gg) and the shear stress (0rg) vanish. Im-

posing this condition and using Plemelj formula [15] the following singular integral equation

is obtained (see A.86—A.90).

l I

Ogg(t) + i04(t) = 2%@ + f M(t, to; O(to))dt, + 0y(2) + i05(z) = 0,
0 0
(16)
where,
M(t, to, A(to)) = @py(2) + Dyy(2) + eZ0[(Z — )P (2) — Ppy(2) + Dyy(2)]- (17

The above singular integral equation is in terms of the unknown @(t,) whose behavior
at the end points 0 and / has to be determined. From the geometry of the crack problem
(Figure 1, page 2) it can be observed that the tip of the kink (A) has the well known square
root singularity. At the other end of the kink (i.e. at the origin), the upper side of the kink,
indicated by the letter U, is an external corner of a wedge and according to Williams [19],
does not give rise to any stress singularity. The lower side of the kink, represented by C, is
an internal corner of a wedge and (following Williams [19]) one would expect it to give rise
to singular stresses. Ithas been shown by Chatterjee [18], by using conformal mapping tech-
niques, that the lower side of the kink represented by C indeed givesrise to singular stresses.
A similar exercise using the dislocation technique is lacking in the literature. It has been cus-
tomary for researchers working the branched crack problem with the dislocation technique

to recognize that the Williams’ singularity exists at the wedge internal corner without proof.
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In the section below, a complete proof verifying the existence of the Williams’ singularity

at the internal corner is given.

Verification of Existence of Williams’ Singularity at the Internal Wedge Corner

Extension of Theorems for Singular Integrals to Bounded Integrals
For developing the proofs to verify the Williams’ singularity at the lower side of the
kink, itis necessary to extend theorems developed for singular integrals to bounded integrals.
The bounded integral near the integration limits tends to a bounded (finite non-zero) part
and a part which vanishes. It is essential to know how the vanishing term of the bounded
integral goes to zero.

Following Muskhelishvili [83], consider the behavior of a Cauchy integral of the form,

!
F(z) = J t:‘(io)z dty (18)
0

near the limits of integration. The function a(t,) is bounded every where in the region of
integration (0 — /) (i.e. it satisfies Holders condition in the range O — /) except near the end

points 0 and /. Near the end points 0/(t,) can be assumed to be of the form

aft) = —Lo 19)
tg(l - to)

where A(t,) is bounded in the entire range of integration. o and B are assumed to be always
between 0 and 1 in order to have bounded integrals. If the above conditions are satisfied,

then, near the end of integration limit (say 0), F(z) can be written as follows (Muskhelishvili

[83], see eq. 29.5, pg 74).
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[

lim F(z) = lim f Mto) dt, _ 7h(0)e™ limL +bf  (20)

— o T T —a
tg(l - to)B th — 2 sin(ma) -0z

z—0 z—0

where bf is abounded function. A similar relation can be written for the behavior of the func-
tion at the other end . If the restriction that o > 0 is removed for the lower end (i.e. o <1
only) then @ can have negative values and hence in the limit the integral has a part that va-
nishes and a bounded part. It should be noted that the same proof used to get the above rela-

tionship (20) can be used even when o is less than 0. Hence any asymptotic value for a

Cauchy integral can be extended for the range — * = @ < 1. It should be noted that when

o = 0 logarithmic singularities occur and equation (20) is no longer valid.

Proof For Verification of Williams Singularity
In order to verify the singularity at the wedge corner it is sufficient to examine the sum
of the hoop and radial stresses. This simplifies the expression used for the asymptotic analy-
sis. Using the stress functions the sum of the radial and hoop stresses can be written as,
0r(z) + Ogg(z) = 4Re[D(2)]- @1
Since all the stresses vanish at the external corner of the wedge the sum of the radial and hoop
stresses must also vanish at the external corner. Therefore using (5), (7), (9) and (12) in (21)

the following expression is obtained.
Re{®(@)} = Re[l4(2) + L(2) + L1(@) + 1,(@) + I5(2) + L) + L,(») + C,| = 0 (22)

where,
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[
1 [ ©t)X(@)

Li(2) = 2 | X(2)(z — zo) dtor
0
!
_ 1| _Ota)X(zo)
I4(Z) - ZJ X(Z)(Z——.—— .ZO) dto,
0
1
C) to)(Zo — Zo
I(z) = — %J——((—;)(_ZZ)—);)dto,

0

o - -1 J Olo)(zo — Z0)X(zo)

X(2) (z = Zo)?
0

l

_1 O(to)(zo — Zo)(Zo + ©)
() = 2[ X(WX@o) (2 — Zo)?
0
__1,@&+0¢
C=-3t X

where, X(z) is given by (11).

Using the limiting value of each integral near the end point, i.e. z = 0, the asymptotic
values of each can be written down. Integrals with X(z) in their denominator require special
attention. It is these integrals which have to be evaluated using the behavior for bounded

integrals as discussed earlier. For example, consider integral I3 which can be written as,

l

_ 1| OtaX(zo)
L@ =3 f Xz — 200

0

l
1 J O(t)X(zo) y,

T 2X@ | (- zo)
0

Now (see B.5, B.6),
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z ,
2 0 =i0,a —i[a(0, — W)]e —i[B(1 — )]
Oto)X(z)) 3 _ _ J2e7B(O)ie "B e L bf, 23)
(z — 2o) cos(ma) {3
0
therefore,
!
. _ O(t)X(z0)
ch® = j X - 20)
0
je —ila(B, —m)]e —i[6(1 —a)] bf
_ np(0)ie e liml 4+ 23 (24)

2 cos(ma) —-0t%
where bfs is a bounded function. If ¢ is assumed to be less than 1/2 then the first term in
equation (23) vanishes. If the vanishing term is neglected this would leave only the bounded
part which from equation (24) results in only the bf3/t!/2 term. But if the vanishing term is
retained and it is multiplied by X(z) then the first term in equation (24) results, plus the term
containing bfs. The other integrals can be evaluated in a similar manner. Refer to Appendix

B for more details.

]
_ 1] 6@ _ np(0)e ~ila®. ~mle —il6(1 — )] ’s
hmI (@) = llmzfz = zodto = 2 sin(ma) H.I,%t + bfy- (25)
0
!
1 ®(to) _ nB(0)e ~ila®. ~mle ~il6(a~1)] 1 .
251 = 13 j 2,0 = 2 sin(ra) limzg + by  (26)
0

limI,(z) = hm

t—0

l
QW)X
X@)z =29
0

nB(0)ie ~ila®. ~me —ilba—1)] 1 bf,

- — i 4, 27
2 cos(Tra) %l_r,%t + ﬁ @7
l
. Oto)(zo — Zo)
-1 ~o/M%0 — Zo)
}Erol @ = t—I}éZJ (z — Zy)? dto

0
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B0Y(1 — a)e —ila®,—m]e ~ilBa—2)]
= 2RO - o © lim-l + bfs (28)
sin(a) =0 1%
!
- 1| Oto)(zo = Zo)X(2o)
limlg(z) = — limz dt
tE)IS 6(2) t_l_l;%ZI X(z) (z — 2‘0)2 0

0

BOY(20, — 3) sin(B)e ~ila® ~mle —ilB(a—2)] bf
_ _ mp0)2a — 3) snzl(cﬁo):(m) e limfla + 5. (29
t—0 Jt

limI,(z) o
t—0

l
_ liml O(to)(zo — _Z_o)gzo + ) dt
t—0 2 X(2) (z — Zo)?

0

B (0)e ~ila(8 ~mle =ilBe:~2)] | bfy

im-—= 4+ — 30

2 cos(mta) }I_r.%ta + ‘/E (30)

c= 1, Dbl 31)
4

where bf;, 1 = 1..7 and bf;; are bounded functions. Substituting equations (24) to (31)
in equation (22) and then using (22) in equation (21) and simplifying, the following equation

is obtained.

Rel 1= B(0)e ~ile®: =0~ sin[B(a — 1) + mat]
© Sin(270l)

— me—i[a(ﬁa—n)—g)e—i(ﬂ(a—2)) sin()(1 — a)e—ina N (Bf)ta}tla

sin(2ma.)

+{A, + iAz}lE] =0 (32)

7
where, Bf={bfj+bf,+bfs—1/4}, A; = Re{bfs+bfs+bfe+bf7+bf.} and Ap=Im{bfz+bfs+
bfg+bf7+bf.}.

As t tends to zero the coefficient of the 1/t/2 term and the coefficient of 1/t* term

should vanish. Considering the coefficient of the 1/t* term it can be written as,

Re[B(O)e-i[a(ea-w—%) sin[6(c. — 1) + 7]
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+ BO) sin(B)e ~ [ —m =51 —<oe4ww—%+nﬂ]=(y (33)

Since if the real part of a complex function is zero the real part of the complex conju-

gate should also be zero. Therefore,

Re[[s(())ella@a—m-%) sin[0(a. — 1) + mal

+ B(0) sin(@)eilo®—m=D(] — a)eiw(a—z)ma]] = 0. (34)

The above equation (34) can be written in matrix form as follows,

Fa

sinfB(a — 1) + nalell®@:m 3 e ~i0@- gin(B)(1 — o) ~ MG~ =)

Re el®@—=2)gin@)(1 — a)ei[a(ea_“)'%)eim sin[B(a — 1) + na]e"i[a(ea‘“)_%)

(0) 0
[B@)]=[o]' (35)

If B(0) and B(0) do not vanish, then the determinant of the above equation should van-
ish (i.e. at least one non-trivial solution exists). Therefore,
sin[8(ac — 1) + ma] + (1 — a)sin6 = 0 (36)
sin[B(a — 1) + wa] — (1 — o)sin® =0 (37)
If equations (36) or (37) or both are satisfied by choosing « suitably, then the coeffi-
cient of 1/t* term vanishes. Considering the 1/t!/2 terms, an equation of the form,
A, =0, (38)
is obtained as t tends to zero.
Now let z approach the internal corner (C in Figure 1) of the wedge. X(z) is the only
function which changes sign as the internal corner is approached. Performing an asymptotic

analysis as before, the following relationship is obtained.

— B(0)e ~ilo®.~m=31sin[6(1 — ) + 7al
sin(27ma)

0r(z) + 0gg(z) = 4Re[{

B(0)e ~ila®.—m —Pe ~iB(a-2) sin(B)(1 — a)e ~ i@
B sin(2ma)

+ (Bf)t“} =
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— (A, F AL (39)

Jt

The coefficient of the 1/t* terms in the above equation is not satisfied if equations (36)
or (37) is satisfied. From equation (38) the coefficient of the t1/2 term vanishes. Therefore
as the reentrant corner is approached the stresses are 1/t* singular.

Consider equations (36) and (37) which are the same expression obtained for an iso-
tropic wedge by Timoshenko[84]. According to Timoshenko [84] the Williams characteris-
tic equations for a wedge can be written as,

0 (40)
0- (41)

The geometry of the wedge is given below in Figure 10.

Il

Asin2a + sin2Aa

Asin20 — sin2A0

Figure 10. Geometry of the Wedge as Defined in Timoshenko, et al., [84]

Using the following change of variables,

A=1-a- (42)
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a=ﬂ?+9 . (43)

and substituting them (equations (42) and (43)) in equations (40) and (41), equations (36)
and (37) can be recovered.

It has been conclusively shown that, in order for the stresses to vanish at the external
corner of the wedge, the Williams’ characteristic equations for the interior isotropic wedge
has to be satisfied. Since the order of the stress singularity at the kink corner (C and U in
Figure 1, page 2) is determined, the singular integral equation (16) can now be solved by

using a suitable numerical scheme.




CHAPTER III
ANISOTROPIC MATERIAL

Analytical Formulation

The formulation of the branched crack problem in an anisotropic material follows the
procedure developed by Krenk[52] and Lo [24]. This problem was also solved by Obata,
et al., [54] using a different procedure, but the solution they developed was restricted to the
infinitesimally small kink. In contrast, the solution developed below can be used for any
kink length. The necessary equations in the final form are given below. For more details
on the derivation of the equations the reader is referred to Appendix C.

The geometry of the problem with the relevant labels is shown in Figure 11. An infi-
nite anisotropic body with a main crack of length 2c and a kink (or branched crack) of length
lis shown. The branched crack makes an angle 8 with the X axis. Bi-axial loads o and ko
are applied remotely along the Y and X axis respectively.

Throughout the development of the analytical solution for the above branched crack
problem, Muskhelishvili’s [14] complex variable approach is used. The problem is solved

using the method of superposition in the same manner as for the isotropic case (Chapter II).

Development of Dislocation Function

The dislocation stress functions are given as (see C.40-C.55),

(44)
(57 — 881 = 83)(81 — sg)eqy (2 — Zoy)

@D(Zl) = ¢'D(Zl) =

(45)
(5 — 81)(83 = 83)(sy — 89¢11 (25 — Zgo)

lIJD(Zz) = w’D(Zz) =

where By and By are the components of the Burgers’ vector.




Figure 11. Geometry Of Anisotropic Branched Crack Problem
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Z; = X + 8y, Zy; = Xo + S0 (46)

where, 1 = 1, 4. X, and y, indicates the position of the dislocation in the infinite plane.

Formulation of Stress Functions for the Main Crack Which Opens Up Due to the
Presence of a Dislocation

The stress fields on the main crack due to a single dislocation are next evaluated by
using the dislocation stress functions. Then the negative of these stresses are applied on the
main crack and the stress functions are developed, following the formulation of Krenk [52].
After satisfying the condition for single valuedness of displacement, the following expres-

sions are obtained (see C.56-C.117).

By = L L1 { s;Bx — By 1 (1 __X(Zol))

Crrdmi(s, — sp) | (5] — 83)(s; — 84 27 201 X(2)
By —B, 1  X(z)
(83 = 84)(83 = 8y) =~ %03 X(z)

_ __ S4Bx— By 1 (] _ X(Zod))}_

(4 — 83)(84 — 89) Z ™ Zo4 X{(z)

W) = L L1 { s,Bx — By 1 (1 _X(Zo2))

Cridmi(s; — sp) | (s, — 83)(5y) — 84) Z 7 Z02 X(z)
3 s3Bx — By 1 3 X(zy3)
(83 = 84)(83 — 8p) Z ™ Zp3 X(z)

s4Bx — By 1 1 X(z04)
B (84 — 83)(84 — 8,) 2 = Zo4 h X(z) ’

Formulation of Stress Functions for the Main Crack Which Opens Up Due to Loads at
Infinity

The stress functions for the problem of the main crack with remote loadings can be
obtained using the same general approach as discussed for the isotropic case and are given

below (see C.118-C.133).
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~ 05 5 . 0%+ (@0, = BiBYog
Py (2) = 2Re(z(s2 —s)X@ T2, — sy + By ) “n

_ $10yy 5, .Ox T (040, — B,By)og 4
e = 2Re<z(sl =@ T T B by )

Formulation of the Singular Integral Equation

By satisfying the stress—free condition on the branched crack, the following expres-

sions are obtained.

l

M, By(to) + M,;By(to)

0

!
+ JZRC[(S1 sin@ + cos G)ZCI)M(ZI) + (s2 sin@ + cos 6)2‘PM(ZZ)JdtO
0

+ 2Re[(s1 sin® + cos 6)2<I)L(z1) + (s,sin® + cos B)Z\I’L(zz)] =0

(49)

l
M, By(ty) + M,,B(t
G =4f 21 x(o) 22 y(O)dt

t— to °
0
!

+ fZRe[((l - s%) sinBcosB — slcos28)<IJM(zl)

0

+ ((1 - s%) sinBcosB — s, cos ZB)IPM(zz)]dtO
+ 2Re[((1 - s%) sinfcosb — 5100528><I>L(zl)

+ ((1 - s%) sinBcos 6 — s, cos ZB)IPL(ZZ)] =0 (50)
where,

z; = a + t(cos O + s;sin0),
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Z; = a + to(cosO + s;sinB),

01

andi=1, 2. Mj1, Mj2, My; and My are given in the Appendix C (C.136-C.139).




CHAPTER IV
EVALUATION OF STRESS INTENSITY FACTORS AND T-STRESS

Isotropic Material

The mode I and mode Il stress intensity factors are evaluated by extracting the singular
parts of the stresses at the tip of the kink. Only the singular parts of the dislocation function
contribute to the stress singularity at the kink tip. So only the stress functions associated with
the dislocation functions are examined. The stress intensity factors at the kink tip are defined

in terms of hoop and shear stresses in front of the kink as follows,
Ky + iKyy = /21 (@ = DY 0gq + i0yg) (51)
where r and 0 are defined in Figure 12. The above stresses have already been normalized

with respect to the applied uniaxial load Gyy,.

RS X
2c >|B
Figure 12. Configuration Describing Near—Kink-Tip Stresses for Evaluating Stress Intensity
Factors
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Using the stress functions, the stresses are written as,
Ogg + 10,9 = Op(2) + Pp(2) + eXzPp'(2) + Yp(@)]: (52)
where,
z =relf, 7z, = t,e? (0<to <. (53)
Substituting for the stress functions using equations (5) and (6) and simplifying, the follow-

ing equation is obtained.

l

reYZRYSL)
o)
0
Oty) = P2 and (55)

(- to)P
a and P are the stress singularities at the kink corner and the kink tip respectively. The above

equation is non—dimensionalized using the following transformation equations.
l
to =L@+ D, r=2E+ D, dio = 5 (56)

After substituting the transformation equations in equation (54) and simplifying, the follow-
ing equation is obtained,

1

o+f B(E aif
. _ (2 PEo)e dg, 57
%0 ¥ 10 2(1) f (1 + Eo)%(1 — Eo)PE — Eo 7

-1
The limiting value of the above integral as £ approaches 1 is evaluated using techniques in

Muskhelishvili [83] for singular integrals.

1
B(Eo)eld dg, - lim WB('l)ele 1 (58)
(1 + Eo)a(l - EO)BE - EO g_,12°‘sm7t[3 (E - 1)B

-1

lim
E—1
Using the above equation in equation (57) and then substituting into equation (51) and sim-

plifying, the following is obtained where B = 1/2.

43/ P(Det® (59)

KI + iKH = W
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In a similar manner, using the method developed by Sih, et al., [S0] the stress intensity
factors for the main crack can also be evaluated. Only the stress functions due to the main
crack with loads at infinity and the stress functions due to the interaction between the main

crack and a dislocation contribute to the singular stresses. Therefore

Kyg — Ky = — 2120 lim(z — z)/2[@p(z) + §((2)] (60)

-7,
where Ky and Ky are mode I and mode II stress intensity factors for the main crack respec-
tively. In this case z; = —2c and c#0. Substituting for the stress functions using equations
(7), and (9) and simplifying, the following equation is obtained.

l [

. . i O(te)X(zo) i O(t,)X(Z,)
— = — / 1 0 o 1 0 0
KMI IKMH 21 /2w 2‘/.2_(:[ e + Zo dto + 2‘/2_0 2C + ZO dto
0 0

l l
i J Olio)zo = Z)X(Eo) 4 . _i j Olzo ~ 2 + )y, ile] ()

2/ (2c + 7.)° ° T 2/2c] X@o2c + 7o) 2,2
0 0

All the integrals in the above equation are bounded and can be evaluated numerically once
the unknown ©(t,) is calculated. If the kink vanishes then ®(t,) = 0, therefore

Ky — Ky = /e
which is the stress intensity of the main crack alone under uniaxial tensile load. When the
kink becomes flat i.e. 6 = O then the mode I stress intensity factor Ky at the tip of the main

crack becomes equal to the mode I stress intensity factor at the kink tip (Ky), i.e.

l

2 /7 [ ©to)X(t
Kyg = /g_tf Z(Z)Jrg)dtﬁ/n_:}(l. (62)
0

Evaluation of the T-Stress for Isotropic Material

The T—stress is defined as the constant, ‘p’ independent term in the asymptotic expan-
sion of the stress field around the tip of the crack (see equations 63 — 65). In the case of the

branched crack problem two types of T—stress can be defined. One is the T—stress associated
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with the main crack alone, i.e. without the branched crack and the other is the local T—stress
defined at the tip of the branched crack. For a coordinate system as shown in Figure 13, the

asymptotic stress expansion is given up to the constant term in the following equations.

X

Figure 13. Near Crack-Tip Stresses for the Branched Crack.

_ Kr s ¢ 1 ¢ Kn 5.9 3.0 2 63
Ogo = \/%[4cos2 400335] + ‘/%[ gsinz + Zs1n3§] + Tcos*¢s (63)

_ K 3 ¢ 1 ¢ Kn 3..9_3..9 i02 64
Opp = %[ZCOSE + Zcos3—2-] + m[— 78in5 = Zsin33] + Tsin’p, (64)

Kt 1.9 1.9, Ki 1 ¢,.3 0 , 6

= Lin— X X Lcos~ + =2 st [ . 5
ot %[4 sinz + zsin3=] + %[4 cos + Fcos3~] — Tsindcosd (65)

If ¢ = 0 and p =0, then

i.e. the T—stress is given by the difference in the hoop stress and radial stress evaluated at the
kink tip.
From Muskhelishvili [15],
Opp = oo = 2Re{[20'(2) + W(z)]e?®), (67)

where,
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CI)= (I)D+CDM+¢L

Consider the contribution from the dislocation function only, which can be written as

l

2Re{[z<1>D'(z) + lpD(z)]eZiG] = 2Re [
0

eif0(t,) — ¢~ 0O(ty)

r_to

dto p (68)

where z =el®, The integrand is a pure imaginary number and therefore there is no contribu-
tion to the T—stress from the dislocation function. Next, consider the contribution from @y
and Wy

2Re{[z0) () + Wy(@)e2®) = 2Re[@y(2) — Pu(@ + @ — DOy (@) (69)
After substituting for the above stress functions, by observation, the following singular inte-

grals are isolated as ‘r’ approaches ‘I’. The remaining integrals in the above equation (69)

are bounded and converge to a finite limit which contributes to the T-stress.

! z
O(to) O(to)X(zo) _dto
ZJZ"Z dt, + —z—f XG0 7= 7o (70)
0 0

D\ (z) =

1 I}

: 1 O(to) O(ty)X(zo)(z + ¢) di,
@M(z)=—JZ_Z)dto 2J X?z); Cz—zo

b

0

I
1] O@ta)X(zo)  dto (71)
2] X@ @-z)

0

l
Ty = -1 J Z®_(t°z) dto +

0
l
1 J O(to)(Zo —
2 (z - Zo)

0

20 4 4 1 [ O =
o ZJ X@ -2

l

1 | Otx)X(z,) dt,
2 X(z) 2~ Zo

0

1
25)X(Zo) dt,

0
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!

L1 f Oto)(Zo — 29)(z + ¢)_dto (72)
2 X@X(zo) 2 Lo

0

Therefore, substituting the above stress functions in equation (69) and simplifying, the fol-
lowing expression is obtained.
2Re[@y(2) — Py(2) + (Z — )Py (@)} =
!

l
2Reqd — j O(to) dt, + & f O(te)X(zo) _dto
0

Z— Zo 2 X(z) Z~ Zo

0

1
2

l

l
i j Oo) 4 _ 1 J O)X(zo) _dt
to — o)
0

+§ Z— Zo X(z) 2z~ Zo

0

l l
_1 f Oto)Zo ~ 20) ;. 1 f Ot)(Zo ~ 29X (zo) _dto
2] e-2 XD @2

2
0

[ l
L1 J Ot)(Zo = 2E + ) dto_ _ 1 j OtX(@)(z + ©) _dtq
2

X(2)X(zo) Z— 2o 2 X(z)3 Z — Zo
0 0
! !
1 O(to) _1 O(tx)X(zo)  dto 73
2 J Gz ZJ X@ (2 -z, .
0

In the limit as z tends to [ the singular part of each pair of integrals given above cancel each
other. Therefore, the contribution to the T—stress from ®yand Wy is only a constant. Hence,
if the real part of equation (69) is calculated at the crack tip it will be a constant which contrib-
utes to the T—stress. Consider the contribution from @ and Wy to the T—stress which is giv-

en by equation (74) for a biaxial loading condition.

2X(z)3 2

2Re[z0,'(2) + W, (@)™} = 2Re{(cz(z -7 _k=> 1))ezi9}0§’§,, 74
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where k is the biaxial stress ratio. The above equation can also be evaluated at the kink tip
(i.e. z=lei®). Therefore, by adding equations (74) and (69), the local T—stress can be eva-
luated at the kink tip. Some simplifications to the above expression for the T—stress can be
made if an infinitesimally small kink length is assumed. Under this assumption the contribu-
tion to the T—stress from @y and ¥ becomes small. Consider the contribution from @,

and W[ only which, for infinitesimally small kink length can be expressed as,

. sin O sin 2
2Re{[Z®; () + W ()] = {[— %-—ﬁ-—z — (k — 1)cos 26]}oyy- (75)
Therefore,
¢ sin 0 sing - 76)
T = 7—\/_7_ —(k - 1)00826 Oyy + 0 ((DM,IPM)’ (

where 8(®p, W) represents a small but finite contribution to the T—stress from @y and Wy.
Using further manipulations the local T—stress in front of the incipient kink can be expressed
in terms of the main crack mode I stress intensity factor Kyyr (i.e. Kuy is calculated in front

of the main crack as if the kink did not exist) as follows.

T =

K () 30 o
M;l[cos(—) - cos(——)] — c0s200yy(k = 1) + (D, W) )

2 [2ml 2 2

From the above equation, for a uniaxial load (i.e. k = 0), it can be seen that when 0 =
0, from equation (69), 3(®p,¥nm) = 0 and T = —0yy*°. Which means that when the kink is
flat i.e. when then the axis of the kink coincides with the axis of the main crack the T—stress
is the negative of the applied remote stress. Now as 6 is varied the T-stress becomes positive
rapidly because ! is very small. Note that the above expression for the T—stress can be used

only for an infinitesimally small kink length. Equation 77 can also be expressed as follows,

T = [cos(%) - cos(%)] — (0 — O + 8(Py, P (78)
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where 0z and oy, are the components of the remote loads parallel to and perpendicular

to the kink respectively as shown in Figure 14.

Figure 14. Components of Remote Loads Parallel to and Perpendicular to the Kink.

Anisotropic Material

The stress intensity factors at the kink tip for anisotropic material are evaluated the

same way as the isotropic case. The mode I and mode II stress intensities are given as

K; = /21(r — )7 Ggg (79)
Ky = /2n(r — D) 0 (80)

where the stresses are evaluated along the kink axis. Using the stress functions,

l

M, By(ty) + M, Bu(to)
096=j — or_to 212 Gt (81)

0
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[

0
Let,
__ Bxto) 83
Bix(to) 0 — t)f (83)
_ Bylto) 84
By(to) = - f (84)

Consider the integral associated with ogg. Using the following transformations, the integral

equation can be normalized in the range from -1 to 1.

to=£E + 1D, 1 = L€+ 1), dto = Ld&, (85)
1
B [ M, BxEo) + M,By(Eo)
= (2 11P%150 125y : 86
%68 <l) J 0+ )81 — E)BE — B ©

-1

As E tends to 1 the singular part is given as,

_ 2B MyBx(1) + MppBy(1) ;

Substituting the above equation in (79) and simplifying, after letting B =1/2, the following

1s obtained.

M, ,Bx(1) + M,,By(1)
— Ar3/2 T11PX 12Py
K, = 2n*/ ey (88)
In a similar manner,
M, Bx(1) + M,,By(1)
_ n3/2..721Px 22Py
Ky = 22°/% jat1/2 (89)

Evaluating the T—stress for Anisotropic Material

Although the method of calculating the stress intensity factors are the same for the iso-
tropic and anisotropic cases, the method of calculating the T—stress is different for anisotrop-

ic material since the equations do not lend themselves to simplifications as in the isotropic
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case. The T-stress is calculated by evaluating the stresses on the flanks of the kink or
branched crack. The only stress which is non-zero on the flank of the branched crack is the
radial stress. The radial stress on the flank, near the kink tip, contains singular terms and a
constant term which is the T—stress. By isolating the singular term the constant term can be
calculated more accurately. The radial stress for any kink orientation 6 is given as,

O = 2 Re[(I)(zl)(s1 cos® — sin0)? + W(z,)(s,cosB — sin6)?|,  (90)
where,

D(z,) = Op(z)) + Pylz)) + Py (zy)- oD

W(z,) = Wp(z,) + Pp(zy) + Wiz 92)
The subscript D indicates stress functions associated with the dislocation only, the subscript
M indicates stress function associated with the interaction due to the main crack and disloca-
tion and subscript L is associated with the main crack under remote loading. The radial stress
Oy can thus be split up into three components,

Oy = o2 + oM + ok, (93)
where the superscripts have their usual meaning. Only the dislocation component of the
stress (0Pyy) gives rise to singular stresses as the crack tip is approached along the kink. The

remaining components are all bounded on the flank of the kink. The radial stress due to the

dislocation is given as,
oD = 2Re[<I>D(zl)(slcosG — sin)? + Wp(z,)(s,cos 6 — sin 6)2]- %94

Substituting for the stress functions and simplifying,

l

M, By(to) + M,,B,(to)
D __ 312 X\F0 322 y\to
On = f 77 dtor (95)

0

where,

M,, = 2Re[

11 (s;cosB — sin6)%s,
2miC11

(8; = sp)(8y — 83)(8; — 54)'
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(s,cosB — sin 6)252 H

(89 — 81)(85 — 83)(s, — 5,

Mo = 2R L] (s;cosB — sin )2
32 © “I2ric) (51 = sp)(87 = 83)(8; — 8y

(s,cos0 — sin0)? H

(s = 8)(s8y — 83)(sy — 8y)
and z; is any point on the infinite plane except on the kink or branched crack.

For calculating stresses on the flank, z; is allowed to be on the line of discontinuity

(1.e. the branched crack). Therefore, using the Plemelj formulae,

l

M, By(to) + M,,By(t
oD = & mi[M;;Bx(t) + My,By(t)] +-J— 318x( °t)_t 32By( O)dto. (96)
(¢]

0

The above relation is valid at all points on the line of discontinuity (0 — /) except at the end
points. But the stresses we are interested in has to be evaluated at the end point. This is not
a problem since accurate T—stresses can be obtained by removing the singular component
and then evaluating the stresses very close to the end point but not at the end point itself. The
singular component comes from the first terms in equation (96) and the second term is
bounded for all values of t and t, except at the end points. Therefore, by neglecting the first
term in equation (96) and evaluating the sum of the terms in equation (93) accurate T—
stresses can be calculated on the flank of the kink since the numerical evaluation is no longer

obscured by terms which are very large.




CHAPTER V
RESULTS AND DISCUSSION-I

Isotropic Material

The singular integral equation (16) is solved using the three methods discussed in Ap-
pendix E. As discussed in Appendix E, in the first method (MI) a stronger singularity is as-
sumed at the intersection of the kink corner and the main crack, i.e. a square root singularity
is assumed at the kink corner while in reality the singularity there is less than square root.
In the other two methods (MII and MIII) the correct singularity, which is given by the roots
of the equations (36) and (37) is assumed at the kink corner. The numerical results for stress
intensity factors (mode I and mode II) given by the three methods are compared with the
solution obtained by Isida, et al., [86] for a range of kink to main crack length ratio (//2c)
and kink angles (8). The boundary force method combined with perturbation techniques was
used by Isida, et al., [86] to obtain the solution for the branched crack problem with various
loading conditions. The loading configurations for which the comparisons are made are
shown in Figure 15, Figure 16 and Figure 17. The reason for choosing Isida’s [86] among
the other available solutions in the literature is because numerical values can be obtained ac-
curately from tables as opposed to obtaining numbers from a graph as in other cases. The
numerical values compared are the mode I and I stress intensity factors (namely Ky and Kpy)
which are normalized with respect to the stress intensity factor of the main crack. One typical
comparison using method I (MI) subjected to load case 1 for akink to main crack length ratio
of 0.005 is shown in Table 1. Numerical results using methods II (MII) and III (MIII) are
compared in Table 2 and 3. From the numerical values given in these tables the following
observations can be made. Method I, although it assumes a stronger (square root) singularity
at the kink corner, still gives accurate results. Method II uses the correct singularity at the

kink corner but it requires a large number of terms for convergence. This is due mainly to
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the presence of other less dominant roots of the Williams characteristic equations (36) and
(37) which results in the unboundedness of the slope of the bounded function. Once these
roots are taken care of, as in Method III, the convergence rate is very fast (almost as fast as
method I). The convergence is fast because not only the bounded function but also the singu-
lar nature of the slope of the bounded function is taken care of in the series representation
of the unknown as discussed in the Appendix E. Table 4 shows the two roots of the Williams’
characteristic equation used in the numerical method. The fourth column in the table gives
the slope of the bounded function and the negative value is indicative of the fact that the de-
rivatives are unbounded at the kink corner. It is due to this fact that the method IT has a very
slow convergence. Numerical results for load cases 2 and 3 shown in Figures 16 and 17 are
compared with Isida, et al., [86] in Tables 5 and 6 for a kink to main crack length ratio of
0.005 using method 1.

Tables 7 and 8 compares the mode I and mode 1I stress intensity factors obtained by
using method I and Il respectively with the solutions obtained by Isida et al., [86] and Mellin
[34] when the kink becomes infinitesimally small. All the results given are for a unit loading
at infinity, normal to the main crack. The difference in the stress intensity factors between
the three methods is always less than 1%.

All the three methods give accurate values for mode I and II stress intensity factors.
Method II (not shown) and III, where the correct singularity is assumed compare more favor-
ably with the result obtained by Mellin [34] and Isida [86] for larger values of kink angles.

From the above comparison of mode I and II stress intensity factors it can be concluded
that the nature of the stress singularity at the kink corner does not influence the stress intensi-
ty factors at the kink tip. A similar conclusion about the T—stress can be made from Table 9
where it can be observed that the difference in the T—stress values calculated by the three
methods are negligible (< .5%). Though the particular case shown is for a kink to main crack

length ratio of 0.005 the results hold true for all range of kink to main crack length ratios.




Table 1. Load Case 1 (No. of Quadrature Points = 121, Method I)
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I12¢ 0 KiMI] | Kp[MI] | KifIsida] | Kg[Isi- | Diff% Diff%
da] Ky Kn
0.005 0 1.0025 0.0 1.0025 0.0 0 0
0.005 10 0.9911 0.0862 | 0.9912 | 0.0862 0.01 0.0
0.005 20 0.9579 | 0.1676 | 0.9580 | 0.1676 0.01 0.0
0.005 40 0.8344 | 0.2989 | 0.8344 | 0.2989 0.0 0.0
0.005 60 0.6594 | 0.3688 | 0.6592 | 0.3690 0.03 0.05
0.005 80 0.4677 | 0.3705 | 0.4672 | 0.3708 0.11 0.08
0.005 90 0.3759 | 0.3484 | 0.3752 | 0.3489 0.18 0.14
Table 2. Load Case 1 (No. of Terms in Polynomial, n = 40, Method II)
I12¢ 0 KyMII] | Kp[MII] | Kq[Isida] | KgfIsi- | Diff% Diff%
da] KI KH
0.005 0 1.0027 0.0 1.0025 0.0 0.02 0.0
0.005 10 0.9912 | 0.0862 | 0.9912 | 0.0862 0.0 0.0
0.005 20 0.9579 | 0.1676 | 0.9580 | 0.1676 0.01 0.0
0.005 40 0.8345 | 0.2990 | 0.8344 | 0.2989 0.01 0.03
0.005 60 0.6593 | 0.3691 0.6592 | 0.3690 0.02 0.03
0.005 80 0.4673 | 0.3710 | 0.4672 | 0.3708 0.06 0.03
0.005 90 0.3753 0.3490 0.3752 0.3489 0.03 0.03

Table 3. Load Case 1 (No. of Terms in Polynomial, n{= 6, ny =4, [see E.14] Method III)

1/2¢ 0 K;[MII] [Ky[MII] | K[Isida] | Kg[Isi- | Diff% | Diff%

da] K; Ky
0.005 10 0.9912 | 0.0862 | 0.9912 | 0.0862 0.0 0.0
0.005 20 0.9579 | 0.1676 | 0.9580 | 0.1676 | 0.01 0.0
0.005 40 0.8344 | 0.2990 | 0.8344 | 0.2989 0.0 0.03
0.005 60 0.6592 | 03691 | 0.6592 | 0.3690 0.0 0.03
0.005 80 0.4673 | 03710 | 0.4672 | 03708 | 0.06 0.03
0.005 90 03752 | 0.3490 | 0.3752 [ 0.3489 0.0 0.03




Table 4. Two Roots of the Williams’ Characteristic Equations (36) and (37) Used in Numeri-

cal Analysis

0 o (053 o—0—-1
10 0.0999 0.0 -0.9001
20 0.1813 0.0 -0.8187
40 0.3028 0.0 -0.6972
60 0.3842 0.0 -0.6158
80 0.4371 0.0195 -0.5824
90 0.4555 0.0914 -0.6359
Table 5. Load Case 2 (No. of Quadrature Points = 121)
I12¢ 0 KiMI] | Kg[MI] | Ky[Isida] | Ky[Isi- Diff% Diff%
da] K Ky
0.005 0 0.0 0.0 0.0 0.0 0.0 0.0
0.005 10 -0.0027 | 0.0154 | -0.0027 | 0.0154 0. 0.0
0.005 20 -0.0105 | 0.0291 | -0.0105 | 0.0291 0.0 0.0
0.005 40 -0.0377 | 0.0460 | —0.0376 | 0.0459 0.27 0.22
0.005 60 -0.0698 | 0.0438 | -0.0698 | 0.0438 0.0 0.0
0.005 80 -0.0937 | 0.0246 | -0.0936 | 0.0246 0.11 0.0
0.005 90 -0.0993 | 0.0113 | -0.0993 | 0.0114 0.0 0.88
Table 6. Load Case 3 (No. of Quadrature Points = 121)
I/2¢c 0 KiMI} | Kg[MI] | Kq[Isida] | Kp[Isi- Diff% Diff%
da] KI KH
0.005 0 0.0 1.0025 0.0 1.0025 0.0 0.0
0.005 10 -0.2607 | 0.9785 | -0.2607 | 0.9785 0.0 0.0
0.005 20 -0.5086 | 0.9085 | -0.5086 | 0.9083 0.0 0.02
0.005 40 -0.9201 | 0.6524 { -0.9199 | 0.6520 0.02 0.06
0.005 60 -1.1659 | 0.3035 | -1.1655 | 0.3033 0.03 0.06
0.005 80 —-1.2223 | -0.0495 | -1.2216 | -0.0490 0.06 1.02
0.005 90 -1.1848 | -0.2013 | —1.1840 | -0.2004 0.07 0.45
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Figure 15. Loading Condition 1

Figure 16. Loading Condition 2
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Figure 17. Loading Condition 3
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Table 7. Comparison of Results with Mellin [34] and Isida [86] for 2¢/l = co (Method I)

0 K;j[MI] Kq[MI] Kj[Isida] | Kpllsida] |Kji[Mellin] | Kp[Mel-
lin]
0 1.0000 0.0 1.0000 0.0 1.0000 0.0
10 0.9886 0.0865 0.9887 0.0864 0.9886 0.0864
20 0.9552 0.1680 0.9553 0.168 0.9552 0.1680
40 0.8313 0.2994 0.8313 0.2994 0.8313 0.2994
60 0.6558 0.3690 0.6557 0.3691 0.6557 0.3693
80 0.4640 0.3700 0.4637 0.3703 0.4636 0.3705
90 0.3724 0.3476 0.3719 0.3480 0.3719 0.3481
Table 8. Comparison of Results with Mellin [34] and Isida [86] for 2¢/] = co (Method III)
0 Ky[MII] | Kg[MI] | KjfIsida] | Kyflsida] Kj[Mellin] | Ky[Mel-
lin]
0 1.0000 0.0 1.0000 0.0 1.0000 0.0
10 0.9886 0.0865 0.9887 0.0864 0.9886 0.0864
20 0.9553 0.1680 0.9553 0.1680 0.9552 0.1680
40 0.8314 0.2993 0.8313 0.2994 0.8313 0.2994
60 0.6554 0.3692 0.6557 0.3691 0.6557 0.3693
80 0.4636 0.3705 0.4637 0.3703 0.4636 0.3705
90 0.3717 0.3481 0.3719 0.3480 0.3719 0.3481

Table 9. Comparison of T—stress Obtained by the Three Methods for Unit Load at Infinity
(1/2¢=0.005)

0 MI MII MIII

0 -1.0 -1.0 -1.0

10 0.1069 0.1069 0.1072
20 0.4185 0.4185 0.4197
40 1.5329 1.5327 1.5369
60 2.9709 2.9692 2.9769
80 4.2550 4.2497 4.2600
90 4.6975 4.6900 4.6992
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Table 10 shows the comparison of T-stress values evaluated directly using equation

(76), after neglecting 6(®y;, W), with the values obtained by solving the singular integral

equation (16) and then using equation (67). The difference between these two values in-

creases with the kink angle. This is due to the increase in 8(®y;, W) in equation (76) as the

kink angle increases. d(®pg, W), which can also be called a correction term, can be calcu-

lated for each kink angle by subtracting column 3 from column 2 in Table 10. The above

method of expressing the T-stress for vanishingly small kink length is similar to the manner

in which Ky and Ky are expressed in terms of sums of the main crack stress intensity factors

and a correction term (for eg. Karihaloo, et al., [25]) which is given in a tabular form as a

function of kink angles. From Table 10 it can be inferred that equation (76) is valid or infini-

tesimally small kink length and small angles. For larger angles the correction term has to

be used.

Table 10. Comparison of Eq. (76) with Numerical T-stress Eq. (67) (2¢/I = o).

6 T (Numerical) T (Eq.(76)) %Diff
0 -1.00 -1.00 0.0
10 76.53 74.73 2.4
20 301.06 296.12 1.66
40 1101.57 1099.06 0.23
60 2129.84 2165.56 1.65
80 3032.29 3166.05 4.22
90 3346.92 3536.53 5.36

Development of Fracture Model

A fracture model based on the T—stress which will predict qualitatively the behavior

of a branched crack is discussed next. Recall from Chapter IV that the T—stressisa ‘p’ inde
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pendent constant term which occurs in the asymptotic expansion of stresses near the kink tip.
For a flat crack in an infinite panel subjected to an uniaxial normal load Gyy™ the T—stress
is given as —Oyy°. This T—stress acts in a direction parallel to the flat crack. Similarly for
a branched crack the T-stress at the kink tip can also be described as the stress which acts
parallel to the kink direction. For a branched crack, the T—stress is a function of kink length,
angle and the loading atinfinity (Gyy, 0xx*) . This functional relationship can be seen from
equation (77) which is for an infinitesimally small kink. The T—stress can either be tensile
(positive T—stress) or compressive (negative T—stress).

At this stage it will be useful to state the Cotterell and Rice [7] T-stress based fracture
stability criterion for a flat crack (unbranched crack) which will then be used to develop the
fracture model for a branched crack. Cotterell and Rice [7] studied the influence of the sign
of the T—stress evaluated in front of a flat crack on the behavior of the flat crack when it grows
in its own plane. They showed that if the T-stress in front of the kink was negative (or com-
pressive) then the crack tends to grow in the same direction it started growing, i.e. along the
plane of the crack. This they called classIfracture. If the T-stress was positive then the crack
deviates from its own plane, this fracture they termed as class II fracture.

The classification of the type of fracture based on the sign of the T—stress is based on
an earlier work by Cotterell [93] in which some experimental verification was done regard-
ing the influence of the sign of the T—stress on crack growth direction. Using photoelastic
methods Cotterell [93] showed that in a plastic cleavage type specimen a flat crack ran
straight when the T—stress in front of the crack was negative and the crack turned when the
T-stress was positive.

Richardson [94] used the T—stress and the critical mode I stress intensity factor calcu-
lated in front of an edge crack in a finite geometry test coupon (isotropic, PMMA) to develop
arelationship between the geometry of the coupon and critical mode I stress intensity factor
Kic. This resulted in an empirical curve called the Equivalent Ratio Biaxial Stress (ERBS)

curve. The ERBS ratio B, is evaluated by first finding an equivalent biaxial remote load for
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an infinite coupon geometry with a crack which would give the same crack tip stress state
as that of a finite coupon geometry with a crack and then finding the ratio of the biaxial re-

mote loads. This is shown in Figure 18.

Figure 18. Comparison of an Arbitrary Cracked Coupon with an Infinite Center—Cracked
Panel (Richardson [94])

The biaxial stress ratio B, is defined as,

B, = I 97)
Oyy

By equating the near crack tip stress state in front of the edge notched finite geometry coupon
and the the crack in an infinite body Richardson [94] obtained the following equation for an

isotropic body.

B, = 1 + LyC (98)
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The above equation (98) relates the T—stress and the mode I stress intensity factor, K eva-
luated in front of the edge notched finite geometry coupon to the biaxial stress ratio B related
to the infinite panel. While performing experiments on PMMA test coupons of varying di-
mensions Richardson [94] observed that for large positive values of the ERBS ratio B, crack
turning occurred and the fracture mode was no longer purely mode I. Large values of B,
results when the T—stress is positive (see equation 98). Richardson [94] also observed that
crack turning did not occur immediately after the T—stress became positive as stated by Cot-
terell and Rice [7], but at a considerably higher positive values of T-stress. For PMMA a
critical T—stress (Tgy;) above which crack turning occurs can be determined by using the
ERBS curve given in Richardson [94] and is found to be 0.4489 ksi. For materials other than
PMMA the critical T—stress (Tyt) must be determined experimentally. Therefore Richard-
son’s [94] experiments shows a clear dependence of crack turning behavior on the T—stress
evaluated in front of the crack in a finite geometry coupon.

The T—stress based fracture criterion developed for a flat crack can be extended to a
branched crack. Consider the situation in which akink is formed at an angle to the main crack
as shown in Figure 1. If the local T—stress calculated in front of the kink tip is less than Teyj
then the kink continues to run in the same direction as it started to kink. This type of crack
growth is called class I fracture. On the other hand if the T—stress is greater than Ty in front
of the kink then the kink will not continue to run in the direction of initial kinking. This type
of fracture in which the kink turns from its initial kinking direction is known as class II frac-
ture. Hence, based on the calculated T—stress in front of the kink, the direction of kink
growth can be qualitatively predicted. The types of fracture are illustrated in Figure 19.

In the present model, the local T—stress in front of the turned crack in an infinite coupon
can be used to predict the most likely direction the turned crack or kink is going to grow.
Based on this understanding of the behavior of the branched crack in an infinite plane the

behavior of the turned crack in a finite coupon geometry can be predicted.




T < Terit

T> Tcrit

Figure 19. Definition of Class I and Class II Fracture.

CLASS 1

CLASSII
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The behavior of mode I and II stress intensity factors and the T—stress as a function
of kink angle and length for both uniaxial and biaxial loading is discussed in the next few
paragraphs.

Figures 20 and 21 shows the variation of the normalized mode I stress intensity factor
with the normalized kink length for uniaxial and biaxial loading respectively. The biaxial
stress ratio 0%x,/0%yy is represented by k. Similarly Figures 22 and 23 represent the varia-
tion in K7 and Figure 24 and Figure 25 the variation in T—stress.

Consider the uniaxial loading case first (i.e. k = 0, Figures 20, 22 and 24). From
Figure 20 it can be seen that the mode I stress intensity factor is maximum and increases with
the kink length when the kink angle is zero i.e. 8 = 0. For all other kink angles the stress
intensity factor is lower than when 0 = 0, and initially drops with an increase in kink length
before increasing again. Therefore it can be concluded that once the crack turns it requires
more load to extend the crack again in the new direction. The variation of mode II stress
intensity factor with kink length is shown in Figure 22. For all kink lengths, Ky is maximum
when the kink angle is between 45 and 60 degrees. Also Ky is never zero for kink angles
other than zero. The T—stress (Figure 24) behaves in an interesting manner. The T value
for a PMMA material is shown on the same figure. For very short kink lengths (less than
0.5% of the main crack length) and kink angles above zero the T—stress is greater than T
and as the kink grows the T—stress decreases. For kink angles less than 60 degrees and kink
lengths more than 40% of the main crack length the T—stress is less than T. Therefore,
whenever a crack deviates from its path to form a kink such that the kink length is very small,
since the T—stress in front of the kink is more than T, it is likely that the kink will deviate
again. If the kink length is long enough and the angle of deviation is also shallow, since the
T—stress is less than T, the kink can continue to run in the same direction as it first started
to grow. It should be kept in mind that the natural direction for the crack to grow when an

uniaxial load is applied, and when there is no kink, is along its own plane (i.e. along Ky =
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0). The crack might kink from its plane of growth due to material inhomogeneities or due
to material defects.

The biaxial stress (k = 5) state is also examined, and the results for mode I and II stress
intensity factors and T—stress are plotted in Figures 21, 23 and 25 respectively. These plots
present an interesting deviation from the case when k = 0. The mode I stress intensity factor
(Figure 21) increases with an increasing kink length for all kink angles. The mode II stress
intensity factor (Figure 23) shows a local minimum (i.e. Ky = 0) for kink angles other than
zero degrees. Therefore the crack can deviate and run along directions other than 6 = 0. But
crack growth in all directions is not stable as seen in Figure 25. Only for kink angles greater
than 45 degrees does the T—stress become less than T¢;; and hence the crack growth is stable.

The results discussed for the infinite coupon geometry can be qualitatively extended
to the case of finite coupon geometry. Consider two tension specimen of varying dimension
as shown in Figure 26. From Richardson {94] it can be noted that, on application of load
and before the crack starts growing, a compressive T—stress exists in front of the edge crack
in the 3 in. tension specimen and a tensile T—stress exist in front of the edge crack in the 2
in. compact tension specimen. The behavior of the cracks in the test coupons with compres-
sive and tensile T—stresses can be understood by studying the branched crack in an infinite
coupon under uniaxial and biaxial load respectively.

First consider the case of the 3 in. tension specimen with T/P = 0.6, where P is the
applied load. Since only qualitative predictions will be made about crack turning angle this
coupon geometry can be compared to a flat crack in an infinite plane where T/o =-1, where
o is the applied load. It can be seen from Figure 24 that for 8 = 0, T/o is —1. If then due
to the presence of some defect or inhomogeneity in the material the crack kinks out of its
plane, the T—stress in front of the kink becomes greater than T for very short kink lengths

(Iess than 0.5% of the main crack length) and hence the kink turns back towards the main
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Figure 20. Variation of Normalized Kj with Normalized Kink Length / (k=0)

Figure 21. Variation of Normalized Ky with Normalized Kink Length / (k=5)
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Figure 22. Variation of Normalized Ky; with Normalized Kink Length / (k=0)
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Figure 23. Variation of Normalized Ky with Normalized Kink Length / (k=5)
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Figure 25. Variation of Normalized T—stress with Normalized Kink Length / (k = 5)
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crack direction and continues to grow. The kink comes back to the main crack direction be-
cause along that direction Ky = 0 (Figure 22) and the T—stress is less than T (Figure 24).
If the kink length is long enough (more than 40% of the main crack length), then according
to Figure 24 the T-stress becomes less than T, and hence the kink can grow at angles less
than 60 degrees. This does not happen for the 3 in. PMMA coupons because the kink, initial-
ly, does not make long enough excursions from it plane of growth to really experience a de-
crease in T—stress values. Therefore, in the absence of large inhomogeneities or discontinui-
ties in the tension specimen, which might cause the kink to have long excursion from the
main crack, the crack in the 3 in. tension coupon grows straight which is also observed exper-
imentally.

In a similar manner the 2 in. tension specimen with T/P = 4 can be compared to an infi-
nite coupon geometry with k = 5. When the kink angle is zero the T—stress is greater than
Terit as in the test coupon. Now if the crack deviates from its plane of growth, for short kink
lengths (i.e. for kink lengths less than 0.5% of main crack), the kink can either turn back and
run along the main crack direction or it can deviate further away from the main crack. It is
more likely that the kink will turn away from the main crack direction and run in a direction
along which the T—stress is less than T since only along this direction stable crack growth
can occur. From Figure 23 it can be observed that the kink angles for which Ky =0 (plane
of local symmetry), is smaller for smaller kink lengths. Therefore, short excursions from
the main crack direction results in shallow turning angles as seen in PMMA test coupons,
and longer excursions of the kink results in sharp turning of kink. Ultimately for the infinite
coupon the kink is likely to turn by more than 45 degrees since only then does the T—stress

become less than Tgyj.

Kink Closing Angle

Kink closing angle (6.) can be defined as that kink angle at which the mode I stress

intensity factor (Kp) vanishes (becomes zero). Figure 27 shows the kink closing angle as a
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function of kink length for uniaxial loading. From this plot it can be inferred that kink clo-
sure occurs only for kink angles above 78 degrees and kink lengths less than 0.1 times the

length of the main crack
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Figure 27. Kink Tip Closing Angle (6.) as a Function of Normalized Kink Length




CHAPTER VI
RESULTS AND DISCUSSION-II

Anisotropic Case

Before discussing the numerical results for the anisotropic case it will be useful to de-
fine some of the parameters which are used in the presentation of the results. These parame-
ters are shown in Figure 28. X-Y are the geometric axes and 1-2 are the material axes and
the angle between them, denoted by Oy, is the material angle. The exterior angle formed
between the kink and the main crack is denoted by 8,, and the angle between the external
bisector to the wedge angle ABC and 1-axis is denoted by ;. 8 is the angle between the
positive X axis and the kink. The 1-direction is assumed to be the direction of higher stiff-
ness, (typically the fibre direction).

The singular integral equations (49 and 50) developed for the anisotropic case are
solved using the three methods discussed in Appendix E. As discussed in Appendix E, in
the first method, a stronger singularity is assumed at the kink corner where the kink and the
main crack meet. In the other two methods the correct singularity, which is given by equation
(99), 1s assumed at the kink corner. The development of this equation is given in Bogy [87]
and is repeated below for completeness.

D= —ts.[2{ty — t3} + {t + t;}t] =0 99)
t; = [Ry(8) 7R (= BIR(BIR(— 6 716D,

t, = [Rl(ea)Rl( - ea) - le(ea) - le( - ea)](s+ 1),

ty = (I = 7,7 cos {(a; + D[$;(8)

- ¢1(_ 0a) — ¢2(ea) + ¢(— 0213,

ty = (F; — V)  cos {(; + DI§;(8a)

- ¢1(— ea) + (1)2(9;1) - q)z(_ ea)] o




Figure 28. Geometry Showing Parameters for Anisotropic Branched Crack Problem.

69




70

ts = [R;(0)R;(— 0)R, ()R, (— 616D,

te = (1 — 7D - ¥2),

where ; (i=1,2) are the roots of the following equation,

where,

Siv* = 4S16v° + 2(Sgs + Sy Y* — 4Si5y + Sy, = 0

1
Sip = Z(Cll + Cpp + Cg6 — 2¢1p)-
Spp = L(cqy + oy — cgg — 2¢10)
12 7 €1 T €2 T Ces Cia)
S P
16 = 4(011 o)

S66 = i‘(cll + C22 + 2C12)9

and cjj’s are the same parameters as used in equation (C.26). These cjj’s can be expressed

in terms of elasticity constants as shown below.

°n = EL1
Cp = Elg
Cio = ~ %1—12
ces = Gio*

R; = (1 + ¥} + 2¥,cos[2(8, — O)])!/2

0 = atan sin® + ¥,sin(20, — 0%) —
! cos6 + ¥, cos(20, — 6% |’ ’
*x _m+0

0 ="

In the above equations E1, E; are the stiffness along the 1 and 2 material direction, G,

is the shear modulus and ; is the Poison’s ratio.
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Table 11 shows the roots of equation (99) for different kink angles and material angles
for a stiffness ratio (E1/E3) of 1.1. The numerical results for stress intensity factors (mode
I and mode II) and the T—stress are compared using the three methods and the results are
shown in Table 12. In method I, 121 quadrature points are used; in method II, 40 terms in
the Jacobi polynomial series; and in Method I the first Jacobi polynomial series has 6 terms
and the second Jacobi polynomial series has 4 terms. From the results shown in Table 12
it can be observed that the error in Ky, Ky and T-stress calculated using the three methods
is always less than 1% (as seen in the isotropic case). It can also be observed that the singular-

ity assumed at the kink corner does not affect the near—kink—tip stress state.

Table 11. Roots of Bogy’s [87] Characteristic Equation (99)

0 07, 6y o oy
10 95 85 0.0196 0.0
20 100 80 0.1855 0.0
40 110 70 0.3058 0.0
60 120 60 0.385C 0.0
80 130 50 0.4368 0.0207
90 135 45 0.4551 0.0923

Table 12. Ky, Ky and T-Stress Calculated Using the Three Methods (I/2¢ = 0.005, E{/E, =
1.1)

MI (121) MII (n=40) MIII (n;+ny = 6+4)
0 K; Ky T K; Ky T K; | Ky T
1.0025| 0.0 [-0.0381.0024| 00 |-0.038[1.0025| 0.0 |-0.038
10 [0.9915 [ 0.0836 | 0.0826 [ 0.9915 | 0.0836 | 0.0827 | 0.9915 | 0.0836 | 0.0830
20 [0.9591 [0.1631 [0.4240 [0.9591 [ 0.1631 | 0.4240 [ 0.9591 | 0.1631 | 0.4253
40 10.838210.2937 [ 1.5674 [0.8382[0.2938 | 1.5672 [ 0.8384 [ 0.2938 | 1.5718
60 |0.6651 [0.3664 |2.9842 [0.6649 | 0.3667 | 2.9824 | 0.6652 | 0.3667 | 2.9906
80 [0.4736 [0.3714 [4.2815 | 0.4731 | 0.3719 | 4.2762 | 0.4732 | 0.3718 | 4.2868
90 [0.3813 [0.3508 [4.7337 [0.3807 [ 0.3513 | 4.7261 | 0.3807 | 0.3513 | 4.7364
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Figures 29, 30 and 31 show the variation of normalized mode I stress intensity factor
(Ky) as a function of kink length (/) and kink angle (6) for different stiffness ratio. From these
plots the following can be observed regarding kink tip closing angle (which is defined as that
kink angle at which the mode I stress intensity factor becomes zero). The kink tip closes for
only a certain range of kink angle and length. The kink length and the angle at which the
kink closes decreases with an increase in stiffness parallel to the direction of the main crack.
For stiffness ratio between 1 and 10 crack closure is observed only for kink angles above 60
degrees. If the length and angle of the kink is large enough the kink will not close at all for
uniaxial loading.

Figure 31 shows the behavior of mode I stress intensity factor Ky when the stiffer
direction is parallel to the main crack. It can be observed, that for very short kink lengths (/
approaching 0), the maximum Ky does not occur at 6 = 0 but at kink angles other than zero.
This implies that once the crack turns to form a kink it requires a relatively lower load to
extend the kink further. But as the kink length increases Kj starts decreasing, which means
a higher load is now required to extend the kink. Gao, etal., [S6] reported that for infinitesi-
mally small kink lengths, for stiffness ratio more than 4 (stiffer axis along the main crack
direction), the maximum Kj did not necessarily occur at 6 = 0. The present result confirms
that observation and also shows that for longer kink lengths maximum Ky always occurs at
6 =0 no matter what the stiffness ratio is. Gao, et al., [56] also observed, for an infinitesimal
small kink, that when the stiffer axis was along the main crack direction and the stiffness
ratio was four the predicted kink growth direction based on the stress intensity factors was
physically unrealistic. Due to this reason Gao, et al., [56] concluded that the stress intensity
based fracture criteria may not be accurate for infinitesimally small kink lengths. For longer
kink lengths, from Figures 29, 30 and 31, it can be observed that maximum Kj occurs always
at © = 0 irrespective of fibre orientation and stiffness ratio. But it has been experimentally
observed for polymeric composites (like graphite—epoxy) that the crack growth direction is

sensitive to the fibre orientation direction since the strength of the composite also varies ac-
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cording to the orientation of the fibre. Hence it can be concluded that a fracture criteria based
on Ky alone might not be accurate for predicting fracture in an orthotropic body.

Figures 32, 33 and 34 shows the variation of normalized mode II stress intensity factor
Kir as a function of kink length and angle for different stiffness ratio. Comparing these plots
with Figure 22 it can be inferred that for longer kink lengths the behavior of Ky is similar
to that observed for the isotropic case whereas for shorter kink lengths Kyj is affected by the
variation in stiffness ratio and hence behaves differently.

Figures 35, 36 and 37 shows the variation of normalized T—stress as a function of kink
length and angle for different stiffness ratio. A Tcyj/0 value of 0.5 (which is an assumption)
is also shown on these figures. The Ty, for an orthotropic material has to be experimentally
determined as in the case of an isotropic material like PMMA. Since experimental T val-
ues, for any orthotropic material, are not available a value of 0.5 ksi is assumed for all fibre
orientation with respect to the crack. It should be noted that T,y varies with fibre orientation,
which is not incorporated into the current assumption of T,y values. However, experiments
can be performed on specific orthotropic materials to determine these values which can be
incorporated into the model. From these plots it can be observed that for short kink lengths
the T—stress is greater than Teyy; for all kink angles and stiffness ratios. But for longer kink
lengths the T-stress can be either above or below T depending on the kink angle, and the
material stiffness ratio. Figure 35 shows the variation of T-stress for the case when the stiff-
er direction is perpendicular to the direction of the main crack. Using the modified T—stress
based fracture criterion, if a kink is formed at a direction to the main crack and if the kink
length is small then it is likely that the kink will not run in its initial direction but will turn
away from that direction since the T—stress is greater than Ty If the kink length is long
enough (more than 30% of the main crack length) then the kink can extend along its initial

direction up to an kink angle of 80 degrees.
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Figure 36 shows the variation of normalized T—stress for the case when the stiffness
ratio is 1.1. The behavior of the T—stress is similar to that observed in the isotropic case.
Figure 37 shows the variation of normalized T—stress when the stiffer axis is parallel to the
main crack axis. From this plot it can be inferred that for short kink lengths, since the T—
stress is greater than Ty, the kink does not run along the initial kink growth direction. For
longer kink lengths (more than 20% of the main crack length) and for kink angles below 30
degrees the T—stress is less than Ty This means that for sufficiently longer kink lengths
the kink can runin its initial kinking direction up to an angle of 30 degrees. For angles above
30 degrees, since the T—stress is greater than Ty, the kink turns from its initial direction.

Figures 38, 39 and 40 shows the variation of normalized Ky, Ky and T—stress respec-
tively as a function of material angle for a kink length which is 0.2% of the main crack length
and a stiffness ratio of 10. From Figures 38 and 39 it can be inferred that when the kink angle
1s zero, 1.e. when the kink coincides with the axis of the main crack Kjand Ky are insensitive
to the variation in material angle. For all other kink angles there is some variation in Ky and
Kj. Figure 38 shows, as stated earlier, that it is possible for Ky to be maximum at kink angles
other than zero. Figure 39 shows that Ky can also be zero at kink angles other than zero.
Figure 40 shows some interesting variations in T-stress as compared to Kyand K. The T—
stress is sensitive to variations in material angle for a kink angle of zero degrees, i.e. when
the axis of the kink coincides with the axis of the main crack. For all other kink angles the
T—stress shows large fluctuations as the material angle is varied. Up to a kink angle of 60
degrees the maximum T—stress below T, occurs when the kink almost parallels the stiffer
axis direction. For example the maximum T-stress below T; for a kink angle of 20 degrees
occurs when the material angle is close to 25 degrees. For kink angles more than 60 degrees

the T—stress remains above T for all material angles.




78

a4

Figure 35. Variation of Normalized T-stress with Normalized Kink Length / (k = 0, E{/E,
=10, 8, = 90)

al-

0 0.2 0.4 0.6 0.8 1.0

Figure 36. Variation of Normalized T—stress with Normalized Kink Length I (k = 0, E,/E,
=1.08, 6, = 0)




79

a4

0 0.2 0.4 0.6 0.8 1.0

Figure 37. Variation of Normalized T—stress with Normalized Kink Length I (k = 0, E|/E,
=10, 0, =0)

1.5

1.0p==

Om

Figure 38. Variation of Normalized K1 with Material Angle 6y, (k = 0, E;/E, = 10)




80

Figure 39. Variation of Normalized Ky with Material Angle 6, (k = 0, E1/E; = 10)
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Figure 40. Variation of Normalized T—stress with Material Angle 6, (k = 0, E{/E; = 10)
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Albritton and Goree [5] performed experiments on standard compact tension, single
edge notched tension and center crack tension silicon carbide reinforced aluminum coupons.
These test coupon had fibres running parallel to or perpendicular to the load direction. While
crack turning was observed in CT test coupons where the fibres ran parallel to the load it was
not observed for any of the coupons for which the fibres ran perpendicular to the load. From
Figures 35 and 37 it can be seen that for a kink angle of zero degree the T—stress has a maxi-
mum value below Terj; when the stiffer axis is parallel to the crack (i.e. perpendicular to the
load). Hence the crack in the CT test coupon, where the stiffer fibres are perpendicular to
the load, runs stably when compared to the case when the fibres are parallel to the load. Al-
britton and Goree [5] also noted that when the fibre volume fraction increased for the case
where the fibres ran parallel to the applied load, the angle at which the crack turned in the
finite couponincreased. This dependence of crack turning angle on the fibre volume fraction
can be attributed to the T—stress as explained in the following lines. Increasing fibre volume
fraction primarily results in increase in stiffness along the fibre direction. From Figures 35
and 36 it can be seen that as the stiffness increases in a direction parallel to the load the maxi-
mum kink angle at which the T—stress is below T increases. i.e. whereas for E{/E; = 1.1
the T—stress is below Trjrup to akink angle of 60 degrees, for E/E, = 10 (stiffer axis parallel
to the load direction) the T—stress is greater than Ty up to akink angle of 80 degrees. There-
fore, for a sufficiently long kink, the angle at which the kink can turn and run increases with
the increase in the volume fraction.

It should also be noted that for an orthotropic material there exists orthotropy in
strength also. Therefore the crack can turn run in a direction where the material is weak
which is usually parallel to the stiffer axis. By calculating the Tc; value experimentally the
influence of strength and stiffness of a material are also incorporated in to the fracture model
through the Trji. Hence by comparing the theoretically determined T—stress values with Ty

values the influence of strength and stiffness are also taken into account.
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The current model is a macroscopic model where phenomenon such as fibre—matrix
debonding, fibre or matrix cracking cannot be accounted. But these can be analyzed by using
a microscopic model. Therefore this model should be used with caution when applied to

such materials where the above mechanisms dominate.




CHAPTER VI

CONCLUSIONS

The branched crack problem in an isotropic and anisotropic material is solved using
the method of dislocations. Stress singularities at the corner where the branched crack and
the main crack meet is investigated and the singularity is shown to be given by Williams’
[19] characteristic equation for the isotropic case. An accurate method is developed to evalu-
ate the T—stress at the tip of the branched crack. Itis shown that the T-stress at the branched
crack tip is insensitive to the order of the singularity at the corner where the kink and main
crack meet, for both isotropic and anisotropic materials. It is also verified that the mode I
(Kp and I (Kqy) stress intensity factors at the kink tip are insensitive to the stress singularity
at the reentrant wedge corner of the branched crack as well.

The values of K1, Kyj and the T-stress evaluated in front of the kink tip are studied as
a function of kink to main crack length ratio, kink angle and the loading parameters for the
isotropic case; for the anisotropic case the influence of relative stiffness property is also in-
cluded. Based on the experiments performed by Richardson [94], Cotterell and Rice’s [7]
T—stress criteria is modified to include an experimentally determined value of T,y above
which a crack deviates from its plane of growth. It is proposed that a crack will continue
in its plane of growth if the T—stress is less than Ty, or deviate from its plane if the T—stress
is more than T For PMMA (which is isotropic), from Richardson [94], a T,y; value of
0.5 ksi was experimentally determined.

The modified T-stress based fracture criteria is applied to the branched crack, in both
isotropic and orthotropic material, and the behavior of the branched crack is discussed. The
following conclusions are arrived at from the above study. Considering an isotropic material
first, it is observed that if a crack subjected to either uniaxial or biaxial loading deviates from

its path to form a kink, the length and angle of the kink with respect to the main crack deter-
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mines how the kink behaves. For a short initial kink length (/ tending to 0) and for all kink
angles (0<6<90), under uniaxial loading, the kink aligns itself with the main crack, but under
biaxial loading it deviates away from the main crack. Therefore, for a biaxial loading state,
the kink direction is sensitive to the applied transverse load oxx“- For a longer kink length,
the kink can continue growing in the initial direction. For example consider an isotropic ma-
terial like PMMA (T = 0.5 ksi) ; for a kink angle of less than 60 degrees and a kink length
which is more than 40% of the main crack length the kink can extend in the initial direction
it started.

Unlike the isotropic case, T¢¢ for an orthotropic material is sensitive to the material
stiffness and strength of the material. i.e. the T,y varies as a function of orientation of the
fibre with respect to the applied load. Hence a range of T, values has to be experimentally
determined in order to apply this modified fracture model to the orthotropic material. In this
study, for an orthotropic material (due to the lack of experimental Ty, values) a Terye value
of 0.5 ksi is assumed for all fibre orientation. Hence the following conclusions are arrived
at from the above assumptions. The behavior of short kinks (/ tending to O) is similar to the
isotropic case for both uniaxial and biaxial loading conditions. Hence, it can be inferred that,
the relative stiffness does not influence the kink behavior when the kink is small. On the con-
trary for a longer kink length, under uniaxial or biaxial loading, the behavior of the kink is
influenced by the relative stiffness. For an uniaxial load, higher the stiffness, more is the
tendency for the kink to run parallel to the stiffer direction.

Hence, given a material, the relative dimensions of the crack and the kink, and the Ty
value (which can be determined as in Richardson [94]), the present study can be used to pre-
dict how the kink will behave when subjected to different loading conditions based on the

modified T-stress fracture model.
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APPENDIX A
ISOTROPIC MATERIAL

Analvtical Formulation for a Dislocation Function

Consider an infinite plane, as shown in Figure A.1, with a dislocation at point z, with
respect to the principal axes (X-Y). Fix another co—ordinate system (X’-Y") with z,, as ori-
gin. The most general form of the dislocation stress function, which is multi valued, can be

written, following Muskhelishvili [15], as follows.

X,

> X

Figure A.1. Geometry of Dislocation Function

dp@) = y,In@')- (A1)

Yp(2) = v,In(z")- (A2
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where, y; and 7, are complex constants. z and z” are complex. z is written either as tel®2 or
xei®, (‘" and “x’ are used interchangeably in the development of equations below). The
branch cut for the multi valued function can be taken to be along the X axis. The displace-

ment can be be expressed in terms of the stress functions as,

u+iv= %E-[%q)D(z’) -7’ ®p(z) — wD(z’)], (A.3)
where, E=Youngs modulus. For one circuit (L) around the dislocation, from the ‘-’ side

to the “+’ side in anti—clockwise direction, the net change in the displacement is given as,

U+ iv = —zli[me(z’) ~ 2p(@) ~ Yp(@)], - (A.4)

1

which, after substituting for the stress functions, can be written as,
[t —u"]+iv*t —v-] = %i[%yl + 7,1 (A.5)
Let,
bl =[ut —u"]+i[vt —v7], (A.6)
where, [b] is the Burgers vector. Therefore,
Eluy; +7,] = [b- (A7)
The sum of external forces acting on a contour (L) around the dislocation should be

zero. This is written in terms of the stress functions as,

> Forces = — i[¢pp(z') — Z7Pp@) + wD(’Z)]L, = 0, (A.8)

which implies that,
Vi = Yy (A.9)
Now the constants y; and 7y, are uniquely determined and the stress functions can be ex-

pressed as,

¢p(z) = %h«f) (A.10)

_ __ME .
Yp(z) = R l)ln(z ). (A.11)
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Changing the coordinate system from X'-Y’ to X-Y coordinate system, the stress

functions for the dislocation can be written as,

°mi(n + 1)(z — zo)

blE
op(z) = E([;{-l_mln(z — Zo) (A.12)
b]E _ bl1E
Vp(z) = — Ei([T]rr)l“(Z ) -7 [b] (A13)

by using the expressions given in Muskhelishvili [15]. Let,

_ __[b]E
O, = D (A.14)

where, t, is some arbitrary variable. Therefore,

dp(z) = Oty)n(z — zo) (A.15)

Yp(2) = Bz — zo) — 70(7@_—(%’ (A.16)

O'p(2) = Pp(2) = Oty)/(z — zo)- (A.17)

Yp(z) = Pp2) = O(to)/(z — zo) + O(to)Zo/(z — z5)? (A.18)

An infinitesimal burgers vector can be mathematically represented as [b]dt,, where
b = Lt —uT] iyt - vl (A.19)
]

This burgers vector can be integrated over a range to represent a crack.

Formulation of Stress Functions for the Main Crack Which Opens Up Due to the Pres-
ence of a Dislocation

The stress fields on the main crack due to a dislocation away from the crack are next
evaluated by using the dislocation stress stress functions. The normal and shear stresses act-

ing on the surface of the main crack due to a dislocation are given as,

O, + O(t,) + O(to)(zo — Zo) = — p(to, X), (A.20)

where, —2¢ < x = 0. The stresses acting on the main crack surface is now known. Hence
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the boundary value problem of a pressurized crack, shown in Figure A.2, can be solved using

techniques given in Muskhelishvili [15].

_p(x9t0)

Figure A.2. Geometry of Pressurized Main Crack

Following Muskhelishvili [15] the normal and shear stresses due to the main crack

alone can be written as,

Oyy(z) — i0xy(2) = Qpi(2) + Dy(2) + 20 y(2) + Ty(2)- (A.21)
Let,

Qu@ = Oy(2) + 70\ (@) + Py(@)- (A.22)
Then,

Oyy(2) — i0xy(2) = Py(z) + QD) + (z — DDy D) (A.23)

Let + refer to the upper side of the main crack and — refer to the lower side. Using

equation A.23 the stresses on the upper and lower side of the main crack can be written as,
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o5 — i0 = PEX) + Q- (A.24)
Oy — 105y = Py(x) + Qfx)- (A.25)
Adding equations A.24 and A.25,
%[ Oy + Oyl = %[o;y + O] = [Py(x) + Qux)]™ + [Py(x) + Qpx)] - (A.26)
Similarly subtracting equation A.24 from A.25,
S0 = o5l = 2o - 05 = [0y — QuT Y = [By(x) — Q0] - (A27)
Using theorems given in Muskhelishvili [15] A.27 can be written as,
[Pm(2) — Qy(2)] = O (A.28)
Using A.26, A.20 and A.28,

(DM(Z) =

1 [X*Optzdt, ¢ (A.29)
IMX(2) t—z X(z)
L

where, @y(z) is a sectionally holomorphic function which is holomorphic everywhere ex-
cept on L (0 to —2¢). Cis a constant which has to be determined by using the condition of
single valuedness of displacement. Also note that x has been replaced by t. The above func-
tion ®p(z) can be evaluated by using contour integrals. As an example, one term in p(t,z,)
will be evaluated below.

Consider the first term in the above integral (A.29) which is repeated below with all

the terms.
_ _ 1 X*M)| Oy , Oty | Oto)(zo — Zo) C
Ppi(z) = ZWiX(Z)J — [t R =2 ]dt X6 (A.30)
L
— 1 X+ | Oo)
F(z,2,) = — XD f T [t — Zo]dt, (A.31)
L

where X(z) is a sectionally holomorphic function and its branch cut is defined as shown in

Figure A.3.
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i0
Z=tel a

8, z+2c=rei%,

Figure A.3. Definition of the Function X(z)

X(z) = Jz(z + 2¢)- (A.32)
X(z) = Jr tei®*0). (A.33)

The branch cut for z1/2 is taken such that, 0 < 6, < 21 and similarly the branch cut for

z+2c 1s taken such that 0 < 87 < 2%, Therefore,

Xt = Jt2c + 1) (A.34)
X7 = — JtQ2c + 1) (A.35)

Consider a contour around the line of integration as shown in Figure A.4 in which the

contour I" divides the entire infinite region into two parts, S* and S—.

r zZ S- Y 0
S+ +
> X
———)
C; 2c C,
- B

Figure A.4. Contour I"

£ is complex and lies on the contour I'. The line integral, equation (A.31) can be writ-

ten in terms of a contour integral as shown below.
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}( X(®) [@(to) ]dg _ 3€ X®) [@(to) ]dﬁ‘ j X+(t>[®<to> ]dt

E—z|E—-1z E —z|E -z to — 2|t — 2z,
r C L+
XE®) | O X~ ] O
C, -

It can be shown that the contour integrals around C; and C, vanish as the contours are
shrunk to a point. Hence this leaves the line integrals. Since X*(t) and X—(t) are related, the

contour integral around I" can be written as,

X(E) ®(t0) _ X+(to) ®(to) X_(to) @(to)
§ § - z[g - ZJC‘E = f o~z [t - Zo]dt - f — [t 2 Zo]dt, (A.37)

Tr L+ L-

X(E) O(to) _ X+ (o) [ O(to)
f E - Z[E - Zo]dE B 2[ to — 2 [t —_ Zont. (A38)

T L+

The contour integrals can be evaluated using the theorems given in Muskhelishvili

[15], chapter 12. Let,

XE®) | O(o) _ f(§)
fafeefie

T r

where f(E) is defined as,

f(€) = X(&)[—?é%] : (A.40)

f(€) is a sectionally holomorphic function in S*, but holomorphic everywhere in S—
except at z, where it has a simple pole. z, is assumed to lie outside the contour. Using the
theorems given for contour integrals in Muskhelishvili [15], chapter 12, the following can

be written.
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2ni| g -
r

—L%—i@;dg = f(z) — G,(2) — Ga(2): (A.41)

where, G1(z) is the principal part of the function at z, and G,(z) is the principal part at infin-
ity. Note the change in sign in equation A.41 when compared to the theorem given in Musk-
helishvili [15], chapter 12, since the direction of integration considered for this study is re-

versed. Gj(z) is evaluated as follows.

A
G, = =75 (A.42)

where A; is the residue of the function f(E) at z,,.

A = lim(E - ZO)X_(El%.).. (A.43)
' E—7, € — zo)
A, = X(z0)O(to) (A.44)

To evaluate G (z) the function f(E) is expanded in terms of 1/E and evaluated as € ap-

proaches co.
1/2 -1
Go(z) = Elirr:o (1 + é—c) (1 - 2—) O(ty) (A.45)
Gw(z) = O(to)- (A.46)
Therefore,
L § _E_f(gT); & = @Z(tcf)igz) _ @(Ztolxgo) 0ty (A.47)
r

Using similar procedures, all the line integrals given in equation A.30 can be evaluated

to give,
Dy(2) = - (BUIF'(220) + OUIF (7) + B0 ~ %G @20 + K05
(A.48)
where,
* _1f o Xz 1
F'(z,20) = 5[2 =%~ XD = 2D X(Z)], (A49)
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G*(z,20) = 5‘;—OF*(z, 7o) (A.50)

and C is still unknown and can be evaluated from the condition that the displacements are

single valued. The condition for single valuedness of displacement is given as,

% %[@D(z) + @yy(z)]dz — %[QD@ + Qu@)dz = o (A.51)
T r

Contracting these contours along the line of discontinuity 0 to —2¢ and 0 to /

(Figure A.5), the contour integrals can be written (using the relation given in A.28) as,

(®+ 1) f [@y(t") — Dpy(tHIAL” + J [T — PptHIdL™

Li+L, L,+L,
+ f [Q4(t") — QpHIdt” = 0, (A.52)
L,+L,
YA &
E-
Ly
r -
S+ Ll + - /|
- 7 »>X
C1< 2c -

Figure A.5. Contour I' (L1+L5)

where the + and — are the limiting values of the sectionally holomorphic function on the line

of discontinuity. ®p and Qp are defined as,

Op(z) = —(—?—(_t";—o), (A.53)
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Qp(z) = Op(z) + 20'p(2) + Pp(2) (A.54)
therefore,
__9)
Qp() = A (A.55)

Using + and — limiting values of the function in the first term in equation A.52, the

following is obtained.

0
o [l - oot = | [ R

L, t=—2¢c

+

TS0 T TXE S Xt | Xt~ X0

20(t,) + Oto)(zo + ) (Zo — Zo) + X(Zo)O(to)(zo — Zo) 2C ]dt (A.56)

where, t* = t. The above integrals can be evaluated using contour integrals (see Appendix

D, equations D.1 — D.13) and are given as,

0
j dt _ __m (A.57)
X*O( — zo) X(zo)
t=—2c
0
a  _ . .
J m = 1 (A 58)
t=—2c

Substituting the above integrals in equation (A.56) the following is obtained.

®+1) f [Dyy(t") — Pp(tHIAL" = (x + 1)(— 4niC — 2mO(t,))- (A.59)
Ll
The only terms from ®ys(z) which contributes on L, are the following integrals,

l l
_1 O(to) * 1 X(z0)O(to) *
2] (t*—Zo)dt * 2{ X'*'(t*)('[*--zo)dt
0 0

where t* € L. Their + and — limiting values, using Plemelj formula, are given below.
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l

l |
f Xeg20) g ~ X000t f S—
0

XN = zo) X" — zo)

0
! + I
1 * o 1
X(Zo)g(to)f X(t*)(t* — ) dt = miO(t,) + X(Zo)(a(to)j X(t*)(t* ~ 2 dt
0 0
! - !
1 * R 1 *
X(ZO)G(tO)[ X(t*)(t* — Zo)dt = ﬂl@(to) + X(ZO)®(tO)J' X(t*)(t* _ Zo) dt
0 0
and
I
O(t,) * dt”
f TS ®(t°)f © - 70
0 L,
_ ~+
_dat *
O(t,) j @ — 20 niO(t,) + bf
L L?- .
_at |y *
O(to) I T — 20 niO(to) + bf >
I L, .
where bf" is a bounded function. Therefore,
(n + 1)% f [@y(t")dz — Py(tH]dt” = 0 (A.60)

L2
Consider the next integral
% j (DY) — dpHI1d” + J Q5" — QpH1dt’
L,+L, L,+L,
These integrals do not have different limiting values on L; but only on L,. Therefore using

Plemelj formula again the limiting values of the above integrals are given below.
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f ®p(2)dz = Oty f "(TQ—ZT.)’

L, L,

- -+

O(to) j Ei—zz—o) = mO(to) + bf",

L L, o

: -

O(to) J Tz%s = — mO(t) + bf*
L, .

where bf" is a bounded function. Therefore,

% f [D5(tHdz — PL(tH]dt" = %2miO(t,)-
L,+L,
Similarly,
[Qp(t) — Qp(H1dt" = 2miO(t,)-
L, +L,
Therefore,

% j [Dp(tHdz — D(tHId" + f [Qp(tH) — Qp(tH1dt™
L,+L, L +L,

= (% + 1)27i0O(t,)- (A.61)

Adding equations A.59, A.60 and A.61 and equating to zero,
(% + )(— 2mC - 4niO(t,) + 27iO(t,)) = 0- (A.62)
C = - O(,) (A.63)
The constant C can be evaluated using a different method which is the same as that used
by Lo [24]. Consider equation A.51 in which the contour is assumed to enclose the branched

or kinked crack also. Therefore,
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% § [Pp(2) + Dyy(2)]dz — %[QD@ + Qu(2)]dz = 0 (A.64)
T r

where the contour I extends to co. Expanding the above integrals in terms of 1/z and 1/z,

%%[‘DM(Z) + ®p(z)]Jdz = lim %{% [C + O(ty)dt,] + o(#)}dz’ (A.65)
r r
jg[QD(Z) + Qu@)dz = = lim % [% [C + O(ty)dt,] + o(}z)}dz- (A.66)
Z—> 7
r r
If,
C = — Oy (A.67)

then the contour integrals, in both of the above equations, vanishes as z tends to co. There-
fore the functions ®p(z),®p(z), Wp(z) and Wp(z) are single valued in the entire plane, in-
cluding infinity, except along the main and kinked crack respectively.

Using equation (A.67) in (A.48),

cI)M(Z) = - {G(to)F(Za zo) + G(to)F(Z, Z,) + O(to)(zo — Z)G(z, 2o)}' (A.68)
where,
1 1 X(z,)
F(z,20) = 5 [Z =% (Z)(ZZ_ ZO)], (A.69)
G(z,2,) = %F(z, Zo): (A.70)
and
Q@) = Py(2) + 2Py ) + Tyy(2)» (A.T1)
therefore,

Yy(2) = Ppy(z) — D\ (2) — 2D\ (2)- (A.72)
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Formulation of the Solution for a Infinite Plane with a Crack.

The next step is to derive the equations for an infinite plate with a crack which is sub-
jected to remote infinite biaxial stresses. The steps for solving this problem follows directly

from Muskhelishvili [15], chapter. 19 (pg. 506 — 508).

D (2) + Q. (2) = 2% (A.73)
P\(z) = Cpoz + Cpy- (A74)
Co=2. (AT5)

CL1 1s a constant which has to be determined from single valuedness of displacement

condition. Single valuedness of displacement condition is expressed as,

0

P A.76
fmdt_ 0- (A.76)
-2c
0

Ciot +Cpp A 77
f————X+(t) dt = 0 (ATT)
—-2c

The above integral can be evaluated using contour integrals (see Appendix D, D.1 ~

D.25) and the following, Cp ;=Cj4c is obtained. Therefore,

L= “?2_Y°§ (A.78)
0Z(z+c¢) (05-02

— ¥ XYW A.79

P@ =% T3 (A.79)

W (2) = Q. (z) — Py(2) — 2PL(2)- (A.80)
_ 02(z+c) (05-02

— ¥ _ XXy A.81

Q1) 2X(2) 4 (Aa.8)

Therefore,

2~ 00 ® §®

WL(Z) ZC“Oyy (Oxx ny) (A.82)

TIX@P2 2
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Let,
0% = ko (A.83)
B Oyy(z +¢) ogpk —1)
D (z) = X 7] (A.84)
_ zc%oy _ogyk — 1) A85
1pL(Z) = 2[X(Z)]3/2 2 (A. )

Formulation of the Solution for the Kinked Crack.

The final step is to satisfy the boundary condition on the kink. For this, the Plemelj
formulae are used. The dislocation stress functions are the only ones which give different
limiting values on the kink surfaces. The stresses due to the dislocation are given by,

Og(@) + 10R(2) = Pp(z) + Dp@) + e2¥zdp'(2) + Wp(2)): (A.86)
The ‘+’ and ‘-’ limiting values of the stresses on the kink are given by,

l /

(o5 + icRm] = F miO® + f %t—‘?_%dto + O + f g(f?)teoi ;) dto
0 0
1 [
. O(ty)e~10 — O(ty)ei®
+ mO) + J o = Ut F 20O + f T dlo (A.87)
0 0

l

£ -0
0By + ioBm] = 2][ @(Eto_)eto)-dto
0

The above integral is interpreted as a Principal Value integral. The other stress func-

tions are regular on the kink. Hence the stresses on the kink can be written as,

l {

. O(t,)eifdt © .
Oge(2) +i0,4(2) = Z]L—(t—quo—g + f MC(t, to; a(to))dty + Ogg(z) + i0,5(z) = O
0 0

(A.88)
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M(t, to, (o)) = Ppi(z) + Py(@) + 29[z — 2)Dyy'(2) ~ Ppy(2) + Dy (z)]:  (AB9)

Oge(2) + i05(2) = PL(z) + D7) + X920 '(2) + ¥ ()] (A.90)




APPENDIX B

EVALUATION OF THE SINGULAR INTEGRALS
First the formula used for evaluating the singular integral is given. The derivation can
be found either in Muskhelishvili [83], chapter 4 or Kaya [87]. Then the application of the

formula to some typical singular integrals is shown.

Formula
Let,
I
O(t,
I(z) = I |:—fo(t_—)z]dt0, (B.1)
0
where,
__ P B.2)
Oo) = e - )P (
z = tel 7, = t,el?, (B.3)

and B*(t,) is a bounded function in the interval 0 — and is not zero at the end points (0 and
1), and a, B < 1. zis any point in the infinite complex plane but not on 0 — [ (Figure 1, page
2). The singular behavior of the above integral after normalizing the integral with respect
to the kink length [ as z approaches 0 is given as,

. O(t,) __ mp(0)e il g ~ilb —e0l . B4
hmf [ =zt~ 2 sin(ma) %1-{% wt OO (B4)

where, ®*(t) tends to a definite limit as t tends to zero and B(0) = B*(0)/ 19+B. The other inte-

grals can be evaluated in a similar manner.
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Some Typical Singular Integrals

For all the integrals given below the length parameter is normalized with respect to

the kink length / and B(0) = B*(0)/ joB

l

T | O(t,)
L= 31—?32”(2 = Zo):l dio

0

=02 | {t(1 — to)B | (2 — Zo)
JL 1
1- -
= 1 1 ( B(to) dt,
= 11m-= B i ]
=02 J 141 — to)f | (te® — toe®®)
JL

—

1[[Bae®]  a,
=02 J 131 = to)f | (tei®:=® — ¢
JL i

which can be written as,

1
.1 V(to) dt,
= lim= -
tl—r»%Z[[tg(l - to)B} (to — zy)
0

where, z; = tei®9 and y(t,) = -B(t,)e~1®. Using the formula given above (B.4) for singular

integrals,

-— imo
= Z e Ly b,

T — 2sin(a) o z$
where bfj is bounded function. Substituting for y(0) and simplifying,

_ ap(0)e i@ -mle—ib(i-)
= 2 sin(a) lim g + bfy-

Consider integral I3.

| X(z)B(t,)
k=2 f ["m‘ﬁ]‘“ o
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1

1 B(to) Voe®(toei® + 2¢)

= limi j ¢ _ _ldt,
=02 | (to)%(1 — to)P /teiBa(te®e + 2¢) (tei®s — t,eif)
0

which can be written as,

1. -
=HmJ%I Bt Jtoe® + 20 |

7
=02 /2¢t | | (to)73(1 — to)P(tei®s — toei®)
JL l

1
e B(to) v (tee™® + 2¢)
= lim dt,

=02 /2¢t | | (t)®~3(1 — to)B(tei® — t,eif)
JL |

which can be written as,

= lim—L

t~>02/2_ct

g——h—n

Vv(to) dto
(9751 — to)f| (o = %)

0

where, 7, = tei®9) anqd

V(t) = — Blto) /(tee™® + 2¢ e — i,

Again, using the formulae given above (B.4) for singular integrals and by simplifying the

resulting expressions, the following is obtained.

je —ilo(8, —m))e —i6(1 — )] bf
_ _ BOe ¢ imL 4 s (B.6)
2 cos(ma) =0t

where bfy is a bounded function. Integrals with 1/(z — z,)? terms can be treated as follows.

l
1IWW%"%Mw

limI.(z) = lim=

0

!
d lf(a(to)(zo — Zo) dt,-

(z — Zo)

limI.(z) = — lim
t—0 52 t—~0dz2

0

The singular part of the integral can now be evaluated using the formula for singular

integrals and is given below.
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BIOVi(] — o)e —ila6:— Do —iB(a—2))
= PO — aje e limL + bf.,

sin(a) t—0 &

where bfs is a bounded function. All the other integrals can be evaluated in a similar manner

as given above.
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APPENDIX C
ANISOTROPIC MATERIAL
Formulation of Governin uations for an Anisotropic Elastic Bod
The Hooke’s law for an anisotropic material possessing one plane of elastic symmetry which

is perpendicular to the z axis is given as,

Exx = C110xx F C120yy + Ciglxy + €130 (C.D
Eyy = C210xx + Cpy0yy + Coglxy + €130 (C2)
€22 = C130xx F Cp30yy + Caglxy + C3307 (C.3)
28xy = C160xx + Cp60yy + C360zz + Ceglay® (C4)

where, cj;’s are the material constants. If plane stress conditions are assumed, where 6, =

0, the following equations are obtained.

Exx = C110x T €150y + Ciglxy’ (C.5)
Eyy = C10x + €50y + Coglxy (C.6)
€22 = C130xx T C30yy + Ca6Txy (C.7)
2€xy = C10x + Cp0y + Ceglxy" (C.8)

If plane strain conditions are assumed then €,,=0. Solving for o,; using equation C.3 the

following relationships are obtained.

Exx = allcxx + al20yy + 316’ny’ (C'9)

The cjj’s are related to the aj’s by the following relationships.

— 2
C.4C C
1133 13
Q= — 22 (C.12)
11 Ci3
€22C33 — 053 C.13
322 = —T ( . )
Ci9Caz — Cy2C
A = 12V¥33 13 237 (C.14)
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ChHeC — CHaC
_ v26V¥33 23V36
ayg = 22 26, (C.15)
C14C — C32C
a,, = 1633 13 36’ (C.16)
16 C33

The equilibrium equations for a 2-D plane problem where the body forces are ne-
glected are given by,

o, Iy _ (C.18)
0x ay

d0yy 0Txy

= 0. C.19
ay+aX 0 (C.19)

The compatibility equation is given by,

= (C.20)
dy?2 ox2 oxdy

Let,

_ Uk y) (C.21)

o
XX ayz

92U(x, y)
oy = =55 (C.22)

02U(x,y)
= — =\ C.23
Xy 0xdy (€23

These equations satisfy the equilibrium equations. Substituting these in equations C.5, C.6
and C.8 and then substituting them back in the compatibility equation C.20 the following

homogeneous partial differential equation is obtained.

94U 04U 04U 94U %U _
C22 ax4 - 2C26—"“ax3ay + (2C12 + C66)_ax28—y2 - C]6—“—axay3 + C“"é"y_4 - 0
(C24)
The solution for the above partial differential equation can be written as,
U = F(x + sy) (C.25)

Substituting the above solution in equation (C.24) the following equation is obtained.
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¢y st = 20,68° + (2cp, + cgg)s? — 2ehe8 + Cpy = O (C.26)

Based on energy principle Lekhnitskii has shown that the roots of the above equation

are always complex. Let s, s, s3 and s4 be the four complex roots (s3= 51, Sa=$7) of the

above equation. Then the complete solution of partial differential equation can be written

as,
U = Fy(x + 8;¥) + Fy(x + sy) + Fa(x + s3y) + Fy(x + sgy) (C27)
The following conditions hold for the complex roots s;, i=1..4. Let,
s; = 0, + iBy (C28)
s, = a, + if, (C29)
where, 0.1, 0, B, B2 are all real.
B, >0, B, >0 and B; = B, (C.30)
Let,
Z) = X+ 81y, Z, = X + 85y (C.31)
then,
U = F(z)) + Fy(zp) + Fi(z)) + Fy(zy) (C.32)
Let,
%E;_ll = oz, (C.33)
‘LIZ = Yz, (C34)

Using C.32 to C.34 in C.21 to C.23 the stresses can be written as,
Oxx = 2Re[s? ¢'(z)) + s2 ¥ (2] (C35)
oyy = 2Re[d'(z) + Y '(z)]- (C.36)

Txy = — 2Re[s; d'(z) + s, W (Z)) (C.37)
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Substituting the above relations in the Hooke’s law (C.9-C.11) and after integration and ne-

glecting the rigid body displacements and rotations the following displacement equations are

obtained.
u(x,y) = 2Re[p;4(z;) + pay(zy)]- (C.38)
v(x,y) = 2Rel[q;P(z;) + q(z))]- (C.39)
where,
Py = cys] + Cpp = Cyg8 -

_ 2 _
Py = €185 T Cjp — CygSy

2 —
_ CppST €y — Cp¢Sy
4 = St

2 _
C1285 + Cop — C687

S

Analytical Formulation For Dislocation Function

The analytical formulation for the dislocation function is given below. Consider an
infinite plane, as shown in Figure C.1, with a dislocation at point zy (Zej = Xoj +5iYoi» 1 =
1..4) with respect to the principal axis (X-Y). The most general form of the dislocation stress
function, which is multi valued, can be written as follows.

dp(z,) = Aln(z; — z,;) (C.40)
Yp(z,) = Bln(z, — z,)- (C.41)

In the above equations (C.40, C.41) z1, 23, Z,1, Zo2, A and B are complex. The
constants A and B can be determined by using the conditions that there is a discontinuity in
displacements for one revolution around a contour L; which goes around the dislocation and
by satisfying the condition that the resultant force vector around a contour is zero. Let the
jump in discontinuity in displacement be represented by By and By which are the X and Y

components of the Burgers vector. The ‘+’ and ‘—’ superscript represents the upper and lower




Z1

Figure C.1. Geometry of Dislocation Function
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side of the dislocation or the discontinuity in displacement. The resultant force vector is giv-

en by,

X+iY = - i[(l — is)Pp(z;) + (1 — i§)Ppzy) + (1 + is)yp(zy) + (1 + is_z)sz)]L1
(C.42)
Using equations C.40, C.41 in C.42 the following equations are obtained.
(1 +is)A — (1 +i5;)A + (1 +is))B + (1 +i5,)B = 0. (C.43)

(1 —i5)A— (1 —ispA + (1 ~i§5,)B — (1 — isp))B = 0 (C.44)

_ , o , B, — iB
@, —g)A — () — igA + (B, — iG)B ~ (), — igB = ———=- (€43
Bx + By (cu6)

— (p; +ig)A + (p; +iq))A — (F, +iq,)B + (p, +iqB = 5

The above four equations are solved using Maple [88] and the following expressions

are obtained for A and B.

_ $1(BxCyy — $78384¢11By) (C.47)
(81 = 8p)(87 = 83)(8] = S4)Cp0Cy4

_ $p(BxCpp — $18384¢1:By) (C.48)
(83 = 81)(s5 = 83)(8y — 84)CCy4

If c16 = cp6 =0 then,

C
= 22 A
818, = §;8, = T (C 9)

Using the above equation in the expressions for A and B, the dislocation density function
is given as,

(81 = 8)(81 = 83)(s1 — S4)eqy

ép(z)) = In(z; = zg,)- (C.50)

(82 = 81)(82 = 83)(8; — 84)qy

Yp(zy) = In(z, — zg,)- (C.51)

Therefore,
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= & — Sle _bBy 1 C.52
(I)D(Zl) = ¢ D(Zl) = (Sl — 32)(31 — S3)(Sl — 84)011 (Zl — ZOl) (C.52)
Wp(z;) = Y'p(zy) = 5Bx = By 1 (C.53)

(33 = 81)(8y = 83)(s5 = 8¢y (2, =~ 2¢p)
An infinitesimal Burgers vector can be mathematically represented as [By ]dt, and

[Byldto, where

(B = L[u* —u”] (C.54)
Byl = L [v* - vl (C.55)

This Burgers vector can be integrated over a range to represent a crack in that range.

Formulation of Stress Functions for the Main Crack Which Opens Up Due to the Pres-
ence of a Dislocation

The stress fields on the main crack due to this dislocation are next evaluated by using
the dislocation stress functions (C.52, C.53). The negative of this stress field is applied on
the main crack and the stress field due to the interaction between the main crack and the dis-
location is derived. The development of these stress functions follows the method formu-
lated by Krenk [52]. Following the formulation of Krenk [52] four new complex stress func-

tions are defined in terms of the known stress functions as follows.

20,(z)) = B(z)) + D(z,) (C.56)
20,(zy) = ¥(z) + ¥(z,) (C.57)
2Q,(z)) = ¥(z;) — Y(z)) (C.58)
2Q,(zy) = ¥(zy) — U(z,)- (C.59)

The normal and shear stresses can be defined using the newly introduced stress func-

tions as,

Oyy = {O(z)) + Q,(z)) + Oy(z,) + Q,(z,)

+ 0,(z) — Q,(z) + 0,3 — Q(Z)} (C.60)
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Oxy = — {8,01(z)) + 5,Q4(z)) + 5,0,(z9) + 5,2,(z9)
+ 830,(Z) — $3R4(Z)) + 340,(Zy) — 5,2,(Zy)} (C.61)
Let the stresses on the crack surface be represented by the following functions,

(o, + ogy)

f) = 2 (C62)
+ —

h(t) = ﬂ;ﬁ (C.63)
A

gt = (G—yz—z-cy—y) (C.64)

k(D) = Ey__z_f’_@ (C.65)

The ‘+’ and ‘-’ values represent the value of the sectionally holomorphic function as

it approaches the upper and lower surface of the main crack surface (Figure C.2).

Figure C.2. Geometry of Pressurized Main Crack
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Let the main crack extend from —c to +c along Y=0 axis. Then,
ofy =4[O0, +Q, + 0, + Q,]T +[0, - Q, + 6, — Q,]. (C66)

Oy ={[0; +Q, +0,+Q,]” +[0, -Q, +0,-Q,]*.  (C67)

Oxy = — {[5,0; + 5,Q; + 5,0, +5,Q,]"

— [8:0, — 53R, + 5,0, — 5,2,]7} (C.68)

Ogy = — {[s;0 + 5,82, + 5,0, + 5,Q,]7

— 530 = 53Q; + 5,0, —5,2)]7} (C.69)
Therefore,

fit)y = {[®; + @2]+ + [0, + O]} (C.70)

— h(t) = {[©,0; + Q,if, + Oya, + Q,if,]~

+[0,0; + Q,iB, + 0,0, + Q,iB,17" (C.71)

g) = —{[Q; + Q1T —[Q; + Q,] "} (C.72)

= k() = {[€,0, + ©,iB, + Q,a, + ©,iB,]~

+ [Qa;, + 0,if; + Q,a, + 0,if,] 7} (C.73)
where, —c <t<c.

Using Muskhelishvili [15], the most general solution for above problem can be written

as,
1 10 Q) |
@1(2) + @2(2) = 2MX(2) j X+(t)(t 2 dt + X(Z)’ (C.74)
L
. . h
0,0,(2) + 0,0,(2) +iB,2,(2) + iB,Q,(z) = — 2ni§((z)J X+(t)gc)— 2 dt + )%g;
L

(C.75)

-1 g®)
Q,(2) + Q,(2) = X (2) fL -2 dt, (C.76)
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0,Q,(2) + 0,Q,(2) + i,0,(2) + iB,0,(2) = 27ti;((z) j x+(g§?— e
L
(C.77)
where,
P(z) = i Apz™ (C.78)
n=0
Qz) = i B,z" (C.79)
n=0
where n is the number of cuts (i.e. cracks). Now from equation C.56,
204(z)) = ®(z)) + D(zy) (C.80)
20,(z)) = ®(z)) + D(z,) (C.81)
Therefore,
©,(z)) = O,(z)- (C.82)
Similarly,
0,(z)) = B,(z,): (C.83)
Qi(z) = — Q(zy)- (C.84)
Qy(z;) = — Qy(z))- (C.85)
Hence,
O,(z)) + O,(z)) = 0,(z)) + O,(z) (C.86)
Q(z) + Q,(zy) = — Q(z)) — Qy(zy)- (C.87)
From equations C.74 and C.75,
P(z) = P(2)- (C.88)
Q(z) = Q2)- (C.89)

Therefore the constants in P(z) and Q(z) are all real.
In the present case n (the number of cracks) is 1 therefore, from equations C.78 and

C.79 there are 4 undetermined constants. By enforcing the condition that the stresses at infin-
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ity vanish, A and B; vanishes. A, and B, have to be determined from the single valuedness

of displacement conditions. Since 0*yy=0"yy and 6*xy=0"yy, therefore g(t) = k(t) = 0. The

stress functions can now be written as,

1 [ XG0 + h©) | s,Ay + By
S, — §;)P = — dt
( 2 l) M(Zl) 2751X(ZI)JL (t _ Zl) X(Zl)
1 [ X+O6 0 + h) s;Aq + By
— s, )W = — dt +
where —¢c < L < cand
fVs, + (O = =— Zg; t—=2Zp t—2zp4
sy = spfy | (83— spf (sq = s,
f(t)s; + h(t) = — + = =
where,
S]BX - By

£, = =L

$3)(S] — 84)cq;

1 $2Bx
2mi(sy = s))(s, —

— By
$3)(8y — S4)Cq)

fy

(C.90)

(C91)

(C.92)

(C.93)

(C.94)

(C.95)

X(z) 1s a sectionally holomorphic function and its branch cut is defined as shown in

Figure C.3.

2c

-

Figure C.3. Geometry for the Function X(z)

z=teiea

Z+C=I‘1€.i91
z—c=ryei%)

> X
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From Figure C.3,

X(z) = Vz* — ¢ (C.96)
X(z) = Jrr,ei®10. (C.97)

The branch cut for z+c is taken such that, 0 < 8; < 2r and similarly the branch cut for

z—c is taken such that 0 < 6, < 2m. Therefore,

Xt = ive? -t (C.98)
X)) = —i/c? - t% (C.99)

Using the methods described in Appendix A (A.29 — A.50) equations C.90 and C.91

can be evaluated and are given below.

_ 1) = sfyp  X(z(sy — spf (85 = 8))f
(52 = s)Pu(® = 5{ Z= 2 X(2)(z — zq;) X(2) }

L] s X)sy = spfy (55— s,
2 Z = Zpy X(z)(z = zg3) X(z)

N _1_{(34 — sy)f, _ X(zog)(s4 = s)f, (84— Sz)fz]

2] 2~ 20 X2z - 299 = X(2)

S280 + Bo (C.100)
X(z)

Similarly,

Z— 7y X(@Z)(z = z¢y) X(z)

(5; = $)¥y@ = %{(Sz —sufy | XS, 7 s)f (8 s1>f2}

Z = Zg3 X(z)(z = zp3) X(z)

+ %{(% — sl X(zga)(s3 —spfy (85 = Sl)fl}

Z ™ Zgy X(z)(z — zgy) X(2)

L1

{(54 —spfy  X(z)(s4 = spfy (84 - Sl)?z}
2

S180 + Bo (C.101)
X(2)
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The constants A, and B, are determined from the condition that the displacements are

single valued. This condition can be expressed as,

fZRe[(pICDD(ZI) + pPy(z))dz, + (p,¥p(z,) + p¥nm(z,))dz,] = O (C.102)

fZRC[((hq’D(Zl) + q;Puz))dz; + (,¥p(zy) + P u(zy))dz,] = 0O (C.103)

where the contour is drawn around the two cuts as shown in Appendix A (Figure A.5, page

95). Shrinking the contours around the cuts, the following integrals are obtained.

2Re(((p,®F (© + p@3i(®) — P, 5 (1) — p,Pig (D))

L,+L,

+ (P WE O + p W) = p W5 (O — p,Wx())dt = O- (C.104)

2Re[((q; B3 ® + 9, P50 — ¢, P50 — g, P5(D)
L, +L,
+(R¥BO + Q¥HO ~ P50 ~ Pu®)ldt = 0. (C.105)
Now consider equation C.104. Like the isotropic case, @y, Wy gives different limit-
ing values on L only and ®@p Wp, gives different limiting values on L, only. Therefore, using

the Plemelj formulae,

f [p; @7 ) — p;Pp (D]dt = p,2nif,- (C.106)
L,

_ - _ _ X(Zo)(sp = spfp (s = spfy
f[p@ﬁ(t) pPr(t)|dt = H X OG = 20 X0
L, L,

_ X(z3)(83 — sf _ (s3 — spf, _ X(zog)(s4 = s)f, _ (s3 = spf,
X*(t)z — Zy3) X*(1) XYz ~ zgy) X *(b)

$,A, + By p,dt
+ 2 (C.107)
X+ [(s; —sp)
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The above integrals can be evaluated using contour integrals which results in the following

expression.

J[P]q)ﬁ(t) - p1Pm (t)]dt
L,

= [fi(s; = s) + T1(s5 = 8p) + Ty(s, — 89) — (8,40 + Bo)}

Similarly,

f [P %5 (® — p ¥ (V]dt = p,2mify-

L,

j[pﬂ’;,}(t) - p,¥m(H)dt = {f2(32 — s + £(s5 —s))

L,

+ Ty(s4 — 57) — (5,40 + Bo))

Using the above integrals in equation C.104 the following equation is obtained.

This can be written as,

2Re {(f1 + f2)(13251 - PiSy + (1?153 + f254)(131 - py)

+ Ao(ps; — Pi82) + Bo(py, — P} =0

By observation,
Ao=—(F +1)
By = (s5f; + s,4f,)
Since A, and B, are real,

Ag= —2@ + T+ +1)

Bo = 2(f15, + £35; + 55F + 5.)

2mip,
(s; —s9)

(C.108)

(C.109)

(C.110)

(C.111)

(C.112)

(C.113)
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Using these in C.100 and C.101 the following are obtained.

l[(sl —sfy Xz ), = spfy  (sy — Sz)fl}

(s = s)Py(2) = 21 2= 2g X2z = zq) X2

41 (s3 — s, _ X(z3)(s5 = 8p)f) (83— so)f,
21 27 203 X(z2)(z — zg3) X(z)

+ 1 [(54 — b Xz, = s, (84— SZ)fz}

21 27 Zy X(z)(z — zgy) X(z)
. fi(s; = 8p) + Ty(s3 — s,) + Fo(s, — 5,) (C.114)
2X(z)
Similarly,
_ 16y = spfy  X(zgp)(s, — spify (s = sphy
(81 = )Wz = 5{ Z =7y X(2)(z — 2y X(2) }

1) s Xy —spf 65— s
2] 7 203 X@2)(z — 2¢3) X(z)

+3 -~

16— sDf  X(zo)(s, — sDf, (54— s,
Z = Zyy X(2)(z = zy,) X(z)

4 f(s; = 5p) + Fi(s3 — s)) + To(s4 — 5)) (C.115)
2X(z)

Simplifying the above expressions the following are obtained.

_11_ 1 $1Bx — By L () - Xt
Pu@) = Cr14mi(sy — sy) {(31 —83)(s; — 89 27 Zon (1 X() )
3By - B, 1 _ X(z03)
(83 - 84)(83 - Sl) z= Z03 X(Z)
__ sBx—By B (1 3 X(Zo4))} (C.116)
(54 — 83)(S4 — 8;) Z — Zoa X(2)

W\ (2) = 1 1 1 [ s$,Bx — By 1 (1 _ X(Zoz))

Cridmi(s; — sp) | (55 — 83)(s, — 89) 2~ Zo2 X(z)
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s;Bx — By T  X(zo3)
(83 = 84)(s3 —85) Z 7 Z3 X(2)

8By =By 1 (1 3 X(Zo4))} (C.117)

(84 - S3)(S4 - Sz) - ZO4 X(Z)
The equations given above are the same as that obtained by Obata et.al [54] using a different

procedure.

Formulation of Stress Functions for the Main Crack Which Opens Up Due to Loads at
Infinity

The stress functions for the problem of the main crack with remote loadings (®r, ¥1)
can be obtained using the same approach as discussed in the previous section (see also Krenk
[52]) and are given below.

Q(z) + s5,P(z) s, [ + A
(52 - 51)X(Z) (32 - 31)

Q@) + 5,P(z) sI' + A
(31 - Sz)X(Z) (51 - 32)’

where, I" and A are pure imaginary constants which have to be determined from remote

O, (2) = (C.118)

Y (z) = (C.119)

boundary conditions and

n
P(z) = > Az (C.120)
n=0
n
Q@) = > Byz" (C.121)
n=0
where n is the number of cuts or crack and A, and B, are real. In the above case n =1 there-
fore,
P(z) = Ao + Az (C.122)
Q@ = B, + Bz (C.123)

Using equation C.118 and C.119 in the expression for stresses (C.35 to C.37) at infinity

(i.e. z tends to oo) the following relations can be obtained.
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[ee]

o
A = % (C.124)
Oxy
2Re[(sI + sz)(K -B)+ s]s:,_(r’ - Al)] = Ogy (C.1206)
Let,
I' =iC, (C.127)
A = iD. (C.128)
Therefore,
— 0')?))( 0’?})’ 0;;’ _ (C 129)
ClayBy + Byl + DIB; + ] = =% + = (@ + ap) + 5=(00, = BBy (&

where C or D have to be chosen arbitrarily from which the other constant is determined. Now
Ao and B, have to determined from the single valuedness of displacement condition which

can be expressed as,

IZR#&M®EG)—IM@EGH+-@£¥fﬁ)—p£¥fa»ﬁt
Ll
where L1 € {-a, a}. After substituting the limiting values of the stress functions and using

the following integral formulas (See Appendix D, D.26 — D.38),

[ a

X+(t)_ —

J
L,

rtdt _
X+@ = °

e

1

Ao =0and B, =0 is obtained. Assuming C =0, the stress functions for remote loading can

be expressed as,

Oy + 8,00  Oxx + (00, — BiByogy + (o) + a,)on
@, (z) = 2Re| ¥ " 520% _z 1%2 ™ P1P2)0yy y
@) e(ﬂ%—%)X@ 1 26, — 5B, + B

(C.130)
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o + 8,08 , O + (a0, — BiByogy + (o + az)o;g‘;)

Wﬂ@=2h<%m—%)M@ 1 2s; = s)(By + B)

(C.131)

Since in the present study 0%°xy = 0,

_ $09v 4 O+ (@405 = BiB)OW Y (o3
@am—2R%x%—s0m@+l o sB B )

~ $100% 7 O (00 — BiBIORFY a3
Y (2) = 2Re(2(31 — 8,) X(2) : 2(s; = s)(By + By R

Formulation of the Singular Integral Equation

Bx(to) and By(t,) can be treated as Green’s function for a point dislocation and can be
integrated over a given range to represent a crack. Then the only boundary condition that
remains to be satisfied is the stress free condition on the branched crack. This is expressed
as,

Ogg(r, 0) = 0,
O,4(r,0) = O-
where, 0 <r < [and 0 is the kink angle and [ is the kink length. Using the stress transformation

relations given below,
Ogg = Oxx 0526 + Oyysin®® + 20,y cosBsin6,
O = (0 -0 )sinGcosB + 20 (cos28 - sinze),
0 yy XX Xy

and substituting for Oxy, Oyy and Oyy the following relations are obtained.

Obg .’ZRe[CDi(zl)(s1 sin® + cos 6)2 + Wy(z,)(s, sin6 + cos 6)2]

ol 2Re[d>i(zl)((l - s%) sinBcos® — s cos 26)
+ ‘Pi(zz)((l - s%) sin®cosO — s, cos 26)]

_ D M L
Ogp = Ogg T Ogg T Ogg
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O, = 0% + o™ + ok
where 1= D, M and L. Substituting for the stress functions and simplifying, the following

pair of singular integral equations are obtained.

l
M, B,(t,) + M,,B,(t
Gog =_j' 11Bx(to) 12By(to) dt,

t_to
0

I
+ J’ZRc{(s1 sin® + cos 9>2(I)M(ZI) + (s,sin® + cos 8)2‘PM(22)]dto
0

+ 2Re] (s, sin6 + cos G)ZCDL(zl) + (s,sin® + cos 9)2‘I’L(Zz)} =0

A
[ MyBy(to) + My,By(to)

J t_to
0

+ JZRe[((l - S%) sinBcos6 — slcOSZB)CI)M(zl)

0

+ ((1 - s%) sinf cos® — s, cos ZB)WM(ZZ)]dtO
+ 2Re[((l - s%) sinBcosB — slcos26>CI)L(zl)

+ ((1 - s%) sinBcosB — s, cos 26)111L(22)] =0
where,
z; = a + t(cos® + s;sin0), (C.134)

Zo; = a + to(cosO + s;sin6), (C.135)

andi=1, 2. Also

= 11 51 i
M, = 2Re[2uicll {(Sl = 8,)(s; — s3)(s; — S4) (cosO + s;sin0)
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52 ; , (C.136)
&5 =506, — 506, =59 (cosB + s,sin 8)}]

M, = — 2Re|: Ll L (cos® + s, sin6)

Rb—l—l{(& — 85)(8; = 83)(8 — 8y

1 i , C.137
T TN T (cos® + s,sin 6)” ( )
L s ((1 - s%) sin 6 cos§ — slcos28)
27iC11 |(sy — 89)(51 — S3)(8; — Su) (cosB + s;sinB)
s, <(1 - sg) sinBcosB — s, 00326) c138)
(89 = s(s5 — 83)(sy — 84) (cosB + s,sinB) T
{ ((1 - s%)sin@cos@ - 5100528)
M,, = — 2Re|=z- :
2miCr1 | (sy — 8p)(8; — S3)(8] — Sy) (cos® + s;sinB)
: ((1 - s%) sinBcosB — s, cos26)

. (C.139)

(s, = $1)(5p — 83)(Sp — Sy) (cosB + s,sinB)
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APPENDIX D
EVALUATION OF SOME CONTOUR INTEGRALS
Given below are some of the contour integrals which occur during the development

of the elasticity solution discussed in chapter II and III. Consider the integral,

_ dt

L

where, by superscript + is meant the limiting value of function X(t) on L where L (-2¢ <

t < 0)is defined in Figure D.1 and

X*(@) = Jut + 2c) (D.2)

-

Figure D.1. Contour Assumed for Evaluating Integral D.1
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Using Cauchy’s integral theorem [89],

dg € _, D.3
}X@Y*§X@> 0 -

I I

Where the contour is shown in Figure D.1. Note that the contours I'; and I'; are of opposite
directions. The direction assumed for I'; is taken to be positive. The outer contour I'; can
be extended to infinity and evaluated and similarly the inner contour I' can be shrunk on-to
the line L across which X () is discontinuous. The contours on L; and L, cancel each other

in the limit. Consider the integral on I'; which can be written as

1 1y | 4E. D.4
HE + O(E2 ]d& (D.4)

I

as £ tends to co. Let,
E = Rel® dE = iRe'®db. (D.5)

The O(1/E2) term vanishes as E tends to co. Therefore,

2
Llgg =i [ a0, (D.6)
g
) 0
= 2mi- (D.7)
Consider the integral on I'; which can be written as,
0
dg dt dg dg
— =2 | =+ + (D.8)
%X@) fx+© {X@) X®)
T -2c ¢ C,
Let,
E = Ree% + 2¢, dE = Reeeidb s D.9)

where R is the radius of the contour C; and O is the angle from the positive direction for

the radius Rcy, Then as the radius R tends to zero,
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§ Rcleieclidec1 _ O(RC )’ (D.10)
¢ \/(Rcleie + 20>(Rcleie + 4c) 1

Similarly,

§ Rczeiec:idGCz — O(\/KC—) (D.11)
2

e \/ (RC2c=,i9c2)(Rczeiec2 + 20)

where Rc and 8¢, have the same meaning as described above. Therefore the integrals on

contour C; and C, vanish as their radius vanishes. Hence

0
dg dt  _ _ . D.12
%X(E)—zfx_’_(t) 27T ( . )
rl —2c
0
. _ . _
[X+(t)_ i (D.13)

-~2c

Consider the integral

0
tdt 14
j —__’X*'(t) (D.14)
—-2c

where X(t) is defined as before. Let the contour be assumed as shown in Figure D.1. There-

fore as before,

gdg 8dE _ D.15
§X(§) ¥ fX(a 0 (D19
I, I,

im @295 _ _ ¢4 ok \aE, D.16)
i fX@) f(l et O )dg (
I, I,
= (0 — 2mic)- (D.17)

The integral on I'; is given as,
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0
EdE tdt EdE Edg
=2 =2 + + == (D.18)
{ X(©®) X+ X(®) X®
1 —-2c Cl C2
As before the integral on C; and C, vanishes. Therefore
0
tdt .
[ '>(—+(—5 = e (Dl9)
-2c

Consider the integral

0

dt (D.20)
(t = 2)XT (V)

-2¢

where X(t) is defined as before. Let the contour be assumed as shown in Figure D.2. There-

fore as before,

€ __ . € _ _ 2mi (D.21)
€ — z0)X(E) € — z)X(E) X(zo)
r T,

The right hand side is obtained from the fact that there exists a pole at z,1 and it is negative

because the contour enclosing it is in the negative direction. Considering the contour on I'y,

im 95 _ 1\ e, D.22
o %; =~ 20X® %(0%2))(1; -

T, I,
=0 (D.23)
The integral on I'; is given as,

0

dg =5 dt
€ — zx)X(E) (t = ze)XH(1)

T, -2
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Figure D.2. Contour Assumed for Evaluating Integral D.20
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S G S | D.24
¥ 3(0 " 20X@® %(t " 20X(®) (29

¢, G
As before the integral on Cy and C, vanishes. Therefore

0

[ dt _ __m (D.25)
(t = zo)X* (D X(zo)

-2
Consider the integral

C

_dt D.26
f X+ (1) (D.26)

=C

where,

Xt =1,/(c? - t3). (D.27)

Define another contour as shown in Figure D.3.

Figure D.3. Contour Assumed for Evaluating Integral D.26, D.33




132

As before,

L f A D.28
%X@ ¥ f;X@) 0 (029
r, T,

Consider the integral on I'; which can be written as,

: dg 1 1
e PX® jg(‘é e )dg (D2
2 FZ

- 2, (D.30)

The integral on I'; is given as,

0
S, e [EE [ Eds D.31
X® f X*@ fX@ T PxE 31

rl —-2c Cl CZ

As before the integral on C1 and C; vanishes. Therefore

C
S S D.32
f X+ i (D.32)
—C
Consider the integral

C

] tdt (D.33)

X*(®

-

where X(t) is defined as before. Let the contour be assumed as shown in Figure D.3. There-

fore,
SdE [ _ D.34
‘f}«&) T Pxe T ° 39
T, I,
: §dE _ 1
El_lglo XE) = f ( 1+ O(EZ))dg, (D.35)
T, I,
= 0. (D.36)

The integral on I'; is given as,




0
BdE _ tdt Edg§ Edg
}ma 2[Xﬂ0+§X@f*§m®
r, -2¢ C, G,

As before the integral on C; and C, vanishes. Therefore

C

tdt
wao‘“

—C
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(D.37)

(D.38)
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APPENDIX E
NUMERICAL TECHNIQUES.
The numerical techniques used for the branched crack problem is similar for both the
isotropic and anisotropic case. Therefore, the solution will be shown for a general case and
it can be applied for either the isotropic or the anisotropic case. Consider the integral,

l l

]( o o) gt + J MIo(to), , toldte = £(t), E.1)
0 0
where,
__ Bt 59
) = ®2)

and the first integral is interpreted in a Cauchy’s principal value sense. The function a(t,)
(dislocation density function) is a flux type function which can be expressed in terms of a
bounded function B(t,) as shown in equation (E.2). The denominator of equation E.2 is also
known as the fundamental function (or the weight function), and o and P are the stress singu-
larities at the kink corner and tip respectively. M[a(t,), t, to] contains the terms which arise
due to the interactions between the main crack and the dislocation and f(t)is due to the re-
motely applied load.

The above singular integral equation is solved using three different numerical techniques as
given in: 1, Erdogan, et al., [90]; 2, He and Hutchinson [91]; and 3, Kaya and Erdogan [85].
In the above three methods the limits of the integral equations are changed so that the limits

are from —1 to 1 by using the transformations given below.

d&,- E3)

B |~

iy =1 e
tO - E(EO + 1)9 t= 2(& + l)v dtO
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Method I: Solution by Gauss—Chebychev Integration Formula [90]

Following [90] the singular integral equation is reduced to a system of linear equations

as shown below.

ZWjB(toj)[q—l_—ti + M{a(toj), t, toj]] = f(t), G = 1,.n— 1) (E4)
j=1

where,
- - 2i 1) o
Ta(te) = 0,to; = cos(:n: 5 ) G =1,.n) (E.5)
U, _t) =0t = cos(%i), i=1,.n-1) (E.6)
w. =2 (G=1,.n) (E.7)
j n’ LM

Tr(t) and Up,_; (t) are the Chebychev polynomial of the first and second kind respectively and
W; are the weights. Thisresults in (n—1) equations in nunknowns. For the complete solution
one more additional condition is required which is obtained as follows.

In method I, the singularity at both ends of the branched crack or kink is assumed to be 1/2.
Since the singularity at the kink corner, where the kink joins with the main crack, is actually
less than 1/2, the value of the bounded function B(t,) at the kink corner is assumed to be 0.
i.e. B(-1) = 0. With this condition the above system of linear equations can be completely

solved. This method was used by Lo [24].

Method 1II: Solution by Jacobi Polynomials

In this method the correct singularity is assumed at the kink corner. The correct singu-
larity is given by the Williams, characteristic equations [19] for the isotropic case and by
Bogy’s [92] equation for the anisotropic case. This method is similar to the manner in which
the singular integral equation was solved by He et.al. [91] though in their approach a simple
algebraic polynomial was used instead of Jacobi polynomials. The advantage of using Jaco-

bi polynomials over algebraic polynomials is that the inherent properties of Jacobi polyno-
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mials can be used to obtain a simplified numerical scheme. The unknown function B(t,) is
expanded in terms of Jacobi polynomials as shown below.

n
Blto) = > CP*Pto). (E.3)
i=0
o and P are the stress singularities and C;is a complex constant. Substituting the above equa-

tion in equation (E.1) the following system of linear algebraic equation is obtained.

n m p(a B)(t n m
Se > H— . ]+ MO C > PP W, b, 1) = f(t)- E9)
i=0  j=1 i=0  j=1
where t,; is the root of Jacobi polynomial given by equation (E.10) and t; are given by the

roots of the Chebychev polynomials (equation E.11).

Pe(t,) =0, j=1,..,m (E.10)
= 2k+1m — . E.11
t; cos(n e 2), k=0,..,n (E.11)

Method III: Solution by Double Series Jacobi Polynomials

The bounded function B(t,) can be written as, (following Kaya et.al [85])

. . (E.12
Blto) = ZZO = ﬁ(1+t)a - Lo >a, B> By €12

i=1j=1
If (-1-a+aq) or (—1-Bj+B1) < O then the derivative of B(t,) is not bounded at the ends of
the integration limits. If that is the case then expanding a(t,) as shown below will improve

the rate of convergence for the numerical scheme.

— ﬁ](to) Bz(to) . (E13
o) = T 0 T % | (20 v 1T % :

a1 and o are the roots of the Williams characteristic equation [19] for the isotropic case and
the roots of equation given by Bogy [92] for the anisotropic case. Bi(to) and Ba(t,) are ex-

panded in terms of Jacobi polynomials as in Method II and the unknown dislocation density
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function is evaluated. The collocation points for this method are again given by the roots

of the Chebychev polynomials as shown below.

- _2k+1 = = . E.14
t; cos(nl - 22), k=0,..,n +n, +1 ( )

n and n represent the number of terms in the Jacobi polynomial series used to represent
B1(to) and Bo(t,) respectively.

It should be noted that where as Kaya, et al., [85] used the above method for a potential
type function (i.e. crack opening displacement) this current method is used for flux type
function where the unknown is the slope of the crack opening displacement. The above three
methods are also referred to in short form as MI, MII and MIII for method I, method II and

method III respectively.
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